37 research outputs found

    Optimal echocardiographic assessment of myocardial dysfunction for arrhythmic risk stratification in phospholamban mutation carriers

    Get PDF
    AIMS: Phospholamban (PLN) p.Arg14del mutation carriers are at risk of developing malignant ventricular arrhythmias (VAs) and/or heart failure. Currently, left ventricular ejection fraction (LVEF) plays an important role in risk assessment for VA in these individuals. We aimed to study the incremental prognostic value of left ventricular mechanical dispersion (LVMD) by echocardiographic deformation imaging for prediction of sustained VA in PLN p.Arg14del mutation carriers. METHODS AND RESULTS: We included 243 PLN p.Arg14del mutation carriers, which were classified into three groups according to the '45/45' rule: (i) normal left ventricular (LV) function, defined as preserved LVEF ≥45% with normal LVMD ≤45 ms (n = 139), (ii) mechanical LV dysfunction, defined as preserved LVEF ≥45% with abnormal LVMD >45 ms (n = 63), and (iii) overt LV dysfunction, defined as reduced LVEF <45% (n = 41). During a median follow-up of 3.3 (interquartile range 1.8-6.0) years, sustained VA occurred in 35 individuals. The negative predictive value of having normal LV function at baseline was 99% [95% confidence interval (CI): 92-100%] for developing sustained VA. The positive predictive value of mechanical LV dysfunction was 20% (95% CI: 15-27%). Mechanical LV dysfunction was an independent predictor of sustained VA in multivariable analysis [hazard ratio adjusted for VA history: 20.48 (95% CI: 2.57-162.84)]. CONCLUSION: LVMD has incremental prognostic value on top of LVEF in PLN p.Arg14del mutation carriers, particularly in those with preserved LVEF. The '45/45' rule is a practical approach to echocardiographic risk stratification in this challenging group of patients. This approach may also have added value in other diseases where LVEF deterioration is a relative late marker of myocardial dysfunction

    Rationale and design of the PHOspholamban RElated CArdiomyopathy intervention STudy (i-PHORECAST)

    Get PDF
    Background: The p.Arg14del (c.40_42delAGA) phospholamban (PLN) pathogenic variant is a founder mutation that causes dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM). Carriers are at increased risk of malignant ventricular arrhythmias and heart failure, which has been ascribed to cardiac fibrosis. Importantly, cardiac fibrosis appears to be an early feature of the disease, occurring in many presymptomatic carriers before the onset of overt disease. As with most monogenic cardiomyopathies, no evidence-based treatment is available for presymptomatic carriers. Aims: The PHOspholamban RElated CArdiomyopathy intervention STudy (iPHORECAST) is designed to demonstrate that pre-emptive treatment of presymptomatic PLN p.Arg14del carriers using eplerenone, a mineralocorticoid receptor antagonist with established antifibrotic effects, can reduce disease progression and postpone the onset of overt disease. Methods: iPHORECAST has a multicentre, prospective, randomised, open-label, blinded endpoint (PROBE) design. Presymptomatic PLN p.Arg14del carriers are randomised to receive either 50 mg eplerenone once daily or no treatment. The primary endpoint of the study is a multiparametric assessment of disease progression including cardiac magnetic resonance parameters (left and right ventricular volumes, systolic function and fibrosis), electrocardiographic parameters (QRS voltage, ventricular ectopy), signs and/or symptoms related to DCM and ACM, and cardiovascular death. The follow-up duration is set at 3 years. Baseline results: A total of 84 presymptomatic PLN p.Arg14del carriers (n = 42 per group) were included. By design, at baseline, all participants were in New York Heart Association (NHYA) class I and had a left ventricular ejection fraction > 45% and < 2500 ventricular premature contractions during 24-hour Holter monitoring. There were no statistically significant differences between the two groups in any of the baseline characteristics. The study is currently well underway, with the last participants expected to finish in 2021. Conclusion: iPHORECAST is a multicentre, prospective randomised controlled trial designed to address whether pre-emptive treatment of PLN p.Arg14del carriers with eplerenone can prevent or delay the onset of cardiomyopathy. iPHORECAST has been registered in the clinicaltrials.gov-register (number: NCT01857856)

    The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unreponsive to standard heart failure therapy

    Get PDF
    Phospholamban (PLN) plays a role in cardiomyocyte calcium handling as primary inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). The p.(Arg14del) pathogenic variant in the PLN gene results in a high risk of developing dilated or arrhythmogenic cardiomyopathy with heart failure. There is no established treatment other than standard heart failure therapy or heart transplantation. In this study, we generated a novel mouse model with the PLN-R14del pathogenic variant, performed detailed phenotyping, and tested the efficacy of established heart failure therapies eplerenone or metoprolol. Heterozygous PLN-R14del mice demonstrated increased susceptibility to ex vivo induced arrhythmias, and cardiomyopathy at 18 months of age, which was not accelerated by isoproterenol infusion. Homozygous PLN-R14del mice exhibited an accelerated phenotype including cardiac dilatation, contractile dysfunction, decreased ECG potentials, high susceptibility to ex vivo induced arrhythmias, myocardial fibrosis, PLN protein aggregation, and early mortality. Neither eplerenone nor metoprolol administration improved cardiac function or survival. In conclusion, our novel PLN-R14del mouse model exhibits most features of human disease. Administration of standard heart failure therapy did not rescue the phenotype, underscoring the need for better understanding of the pathophysiology of PLN-R14del-associated cardiomyopathy. This model provides a great opportunity to study the pathophysiology, and to screen for potential therapeutic treatments

    Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy

    Get PDF
    BACKGROUND: Phospholamban (PLN) is a critical regulator of calcium cycling and contractility in the heart. The loss of arginine at position 14 in PLN (R14del) is associated with dilated cardiomyopathy with a high prevalence of ventricular arrhythmias. How the R14 deletion causes dilated cardiomyopathy is poorly understood, and there are no disease-specific therapies. METHODS: We used single-cell RNA sequencing to uncover PLN R14del disease mechanisms in human induced pluripotent stem cells (hiPSC-CMs). We used both 2-dimensional and 3-dimensional functional contractility assays to evaluate the impact of modulating disease-relevant pathways in PLN R14del hiPSC-CMs. RESULTS: Modeling of the PLN R14del cardiomyopathy with isogenic pairs of hiPSC-CMs recapitulated the contractile deficit associated with the disease in vitro. Single-cell RNA sequencing revealed the induction of the unfolded protein response (UPR) pathway in PLN R14del compared with isogenic control hiPSC-CMs. The activation of UPR was also evident in the hearts from PLN R14del patients. Silencing of each of the 3 main UPR signaling branches (IRE1, ATF6, or PERK) by siRNA exacerbated the contractile dysfunction of PLN R14del hiPSC-CMs. We explored the therapeutic potential of activating the UPR with a small molecule activator, BiP (binding immunoglobulin protein) inducer X. PLN R14del hiPSC-CMs treated with BiP protein inducer X showed a dose-dependent amelioration of the contractility deficit in both 2-dimensional cultures and 3-dimensional engineered heart tissues without affecting calcium homeostasis. CONCLUSIONS: Together, these findings suggest that the UPR exerts a protective effect in the setting of PLN R14del cardiomyopathy and that modulation of the UPR might be exploited therapeutically

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    INTRODUCTION Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    High Resolution Systematic Digital Histological Quantification of Cardiac Fibrosis and Adipose Tissue in Phospholamban p.Arg14del Mutation Associated Cardiomyopathy

    Get PDF
    Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN) gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8) from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50%) male). An in-house developed open source MATLAB script was used for digital analysis of Masson's trichrome stained slides (http://sourceforge.net/projects/fibroquant/). Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies

    A Systematic Analysis of the Clinical Outcome Associated with Multiple Reclassified Desmosomal Gene Variants in Arrhythmogenic Right Ventricular Cardiomyopathy Patients

    Get PDF
    The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. Graphical Abstract

    Evaluation of the 2021 ESC recommendations for family screening in hereditary transthyretin cardiac amyloidosis

    Get PDF
    AIMS: The 2021 European Society of Cardiology (ESC) screening recommendations for individuals carrying a pathogenic transthyretin amyloidosis variant (ATTRv) are based on expert opinion. We aimed to (i) determine the penetrance of ATTRv cardiomyopathy (ATTRv-CM) at baseline; (ii) examine the value of serial evaluation; and (iii) establish the yield of first-line diagnostic tests (i.e. electrocardiogram, echocardiogram, and laboratory tests) as per 2021 ESC position statement.METHODS AND RESULTS: We included 159 relatives (median age 55.6 [43.2-65.9] years, 52% male) at risk for ATTRv-CM from 10 centres. The primary endpoint, ATTRv-CM diagnosis, was defined as the presence of (i) cardiac tracer uptake in bone scintigraphy; or (ii) transthyretin-positive cardiac biopsy. The secondary endpoint was a composite of heart failure (New York Heart Association class ≥II) and pacemaker-requiring conduction disorders. At baseline, 40/159 (25%) relatives were diagnosed with ATTRv-CM. Of those, 20 (50%) met the secondary endpoint. Indication to screen (≤10 years prior to predicted disease onset and absence of extracardiac amyloidosis) had an excellent negative predictive value (97%). Other pre-screening predictors for ATTRv-CM were infrequently identified variants and male sex. Importantly, 13% of relatives with ATTRv-CM did not show any signs of cardiac involvement on first-line diagnostic tests. The yield of serial evaluation (n = 41 relatives; follow-up 3.1 [2.2-5.2] years) at 3-year interval was 9.4%.CONCLUSIONS: Screening according to the 2021 ESC position statement performs well in daily clinical practice. Clinicians should adhere to repeating bone scintigraphy after 3 years, as progressing to ATTRv-CM without signs of ATTRv-CM on first-line diagnostic tests or symptoms is common.</p
    corecore