234 research outputs found

    Formation of Polyurethane Film Containing Silicone Polymer with Silanol Residue

    Get PDF
    The silicone polymers containing a silanol residue were synthesized from silica gel, while the polyurethanes (PUs) bearing a carboxyl moiety were prepared using 2,2-bis(hydroxymethyl)propionic acid (BHMPA) as one of the diol components. The fabrication of the PU films was carried out using these two polymers, then the tensile and thermal properties were investigated. Both the amounts of the carboxyl side groups of the PU chain and the residual silanol of the silicone polymer significantly affected the mechanical property of the film, in addition, the incorporation of 3-aminopropyltrimethoxysilane (APTMS) was quite effective for enhancing the elastic modulus (E). As a result, the film prepared from the polyurethane containing the BHMPA unit with a combination of APTMS and the silicone polymer, having a proper amount of silanol groups, showed the highest effect (E = 5.36 N/mm2), while that observed for the film prepared without using BHMPA and a silicone polymer was 2.10 N/mm2. An acid-base interaction between the carboxyl moiety of the PU and amino group of APTMS occurred, while the formation of the siloxane linkage through the silylation reaction between the trimethoxysilyl group of APTMS and silanol also took place

    Prospect for Future MeV Gamma-ray Active Galactic Nuclei Population Studies

    Full text link
    While the X-ray, GeV gamma-ray, and TeV gamma-ray skies have been extensively studied, the MeV gamma-ray sky is not well investigated after the Imaging Compton Telescope (COMPTEL) scanned the sky about two decades ago. In this paper, we investigate prospects for active galactic nuclei population studies with future MeV gamma-ray missions using recent spectral models and luminosity functions of Seyfert and flat spectrum radio quasars (FSRQs). Both of them are plausible candidates as the origins of the cosmic MeV gamma-ray background. If the cosmic MeV gamma-ray background radiation is dominated by non-thermal emission from Seyferts, the sensitivity of 10^-12 erg cm^-2 s^-1 is required to detect several hundred Seyferts in the entire sky. If FSRQs make up the cosmic MeV gamma-ray background, the sensitivity of ~4 x 10^-12 erg cm^-2 s^-1 is required to detect several hundred FSRQs following the recent FSRQ X-ray luminosity function. However, based on the latest FSRQ gamma-ray luminosity function, with which FSRQs can explain up to ~30% of the MeV background, we can expect several hundred FSRQs even with the sensitivity of 10^-11 erg cm^-2 s^-1 which is almost the same as the sensitivity goal of the next generation MeV telescopes.Comment: 9 pages, 5 figures, accepted for publication in PAS

    PT-symmetric non-Hermitian quantum many-body system using ultracold atoms in an optical lattice with controlled dissipation

    Get PDF
    We report our realization of a parity-time (PT) symmetric non-Hermitian many-body system using cold atoms with dissipation. After developing a theoretical framework on PT-symmetric many-body systems using ultracold atoms in an optical lattice with controlled dissipation, we describe our experimental setup utilizing one-body atom loss as dissipation with special emphasis on calibration of important system parameters. We discuss loss dynamics observed experimentally.Comment: 13 pages, 8 figure

    Visualizing convolutional neural network for classifying gravitational waves from core-collapse supernovae

    Full text link
    In this study, we employ a convolutional neural network to classify gravitational waves originating from core-collapse supernovae. Training is conducted using spectrograms derived from three-dimensional numerical simulations of waveforms, which are injected onto real noise data from the third observing run of both Advanced LIGO and Advanced Virgo. To gain insights into the decision-making process of the model, we apply class activation mapping techniques to visualize the regions in the input image that are significant for the model's prediction. The class activation maps reveal that the model's predictions predominantly rely on specific features within the input spectrograms, namely, the gg-mode and low-frequency modes. The visualization of convolutional neural network models provides interpretability to enhance their reliability and offers guidance for improving detection efficiency.Comment: 13 pages, 10 figure

    4 V class aqueous hybrid electrochemical capacitor with battery-like capacity

    Get PDF
    A new aqueous hybrid electrochemical capacitor consisting of a porous positive capacitive electrode and a water-stable multilayered Li negative electrode is demonstrated. The new cell design affords cell voltages close to 4 V in a mild aqueous electrolyte. Application of a pseudocapacitive positive electrode with high specific charge results in specific energy comparable to present rechargeable batteries.ArticleRSC ADVANCES. 2(32):12144-12147 (2012)journal articl

    Comparative study of 1D and 2D convolutional neural network models with attribution analysis for gravitational wave detection from compact binary coalescences

    Full text link
    Recent advancements in gravitational wave astronomy have seen the application of convolutional neural networks (CNNs) in signal detection from compact binary coalescences. This study presents a comparative analysis of two CNN architectures: one-dimensional (1D) and two-dimensional (2D) along with an ensemble model combining both. We trained these models to detect gravitational wave signals from binary black hole (BBH) mergers, neutron star-black hole (NSBH) mergers, and binary neutron star (BNS) mergers within real detector noise. Our investigation entailed a comprehensive evaluation of the detection performance of each model type across different signal classes. To understand the models' decision-making processes, we employed feature map visualization and attribution analysis. The findings revealed that while the 1D model showed superior performance in detecting BBH signals, the 2D model excelled in identifying NSBH and BNS signals. Notably, the ensemble model outperformed both individual models across all signal types, demonstrating enhanced detection capabilities. Additionally, input feature visualization indicated distinct areas of focus in the data for the 1D and 2D models, emphasizing the effectiveness of their combination.Comment: 12 pages, 9 figure

    慢性肺疾患の早産児におけるプロテインC経路 : 前向き研究

    Get PDF
    Background: Chronic lung disease (CLD) is a major neonatal pulmonary disorder associated with inflammation. Recent studies have shown that protein C anticoagulant pathways, such as those for protein C (PC), protein S (PS), and thrombomodulin (TM), could be useful indices for reflecting pulmonary injury. However, the involvement of these factors in preterm infants with very low birthweight (VLBW) who have developed CLD remains to be investigated. Here, we investigated whether PC pathway-related factors could predict the development of CLD in preterm infants with VLBW. Methods: We collected plasma samples from 26 preterm infants with VLBW (13 each from those with and without CLD) at the time of birth and measured TM, PC, and PS levels in their plasmas. We analyzed prospectively the relationship between these factors in infants with and without CLD. Results: There were significant differences in gestational age, birthweight, Apgar score (5 min), and duration of mechanical ventilation between the CLD and non-CLD groups. No significant differences in the PC and PS levels at birth were observed between the two groups, whereas the TM levels in the CLD group were significantly higher than those in the non-CLD group (P = 0.013). The TM levels correlated with gestational age and duration of mechanical ventilation. However, covariance analysis demonstrated that gestational age was significantly associated with TM levels, and consequently, development of CLD was not associated with TM level at birth. Conclusions: Thrombomodulin, PC, and PS levels at birth could not predict the development of CLD in preterm infants with VLBW.博士(医学)・甲第850号・令和4年9月28日© 2022 Japan Pediatric Society.This is the peer reviewed version of the following article: [https://onlinelibrary.wiley.com/doi/10.1111/ped.15221], which has been published in final form at [https://doi.org/10.1111/ped.15221]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.発行元が定める登録猶予期間終了の後、本文を登録予定(2023.01
    corecore