54 research outputs found

    Exploiting the full power of temporal gene expression profiling through a new statistical test: Application to the analysis of muscular dystrophy data

    Get PDF
    Background: The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. Results: We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gammasarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. Conclusion: The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523

    Corticosteroids for severe sepsis: an evidence-based guide for physicians

    Get PDF
    Septic shock is characterized by uncontrolled systemic inflammation that contributes to the progression of organ failures and eventually death. There is now ample evidence that the inability of the host to mount an appropriate hypothalamic-pituitary and adrenal axis response plays a major in overwhelming systemic inflammation during infections. Proinflammatory mediators released in the inflamed sites oppose to the anti-inflammatory response, an effect that may be reversed by exogenous corticosteroids. With sepsis, via nongenomic and genomic effects, corticosteroids restore cardiovascular homeostasis, terminate systemic and tissue inflammation, restore organ function, and prevent death. These effects of corticosteroids have been consistently found in animal studies and in most recent frequentist and Bayesian meta-analyses. Corticosteroids should be initiated only in patients with sepsis who require 0.5 μg/kg per minute or more of norepinephrine and should be continued for 5 to 7 days except in patients with poor hemodynamic response after 2 days of corticosteroids and with a cortisol increment of more than 250 nmol/L after a standard adrenocorticotropin hormone (ACTH) test. Hydrocortisone should be given at a daily dose of 200 mg and preferably combined to enteral fludrocortisone at a dose of 50 μg. Blood glucose levels should be kept below 150 mg/dL

    Modulation of NKp30- and NKp46-Mediated Natural Killer Cell Responses by Poxviral Hemagglutinin

    Get PDF
    Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection

    Selected heterozygosity at cis-regulatory sequences increases the expression homogeneity of a cell population in humans

    Get PDF
    Background: Examples of heterozygote advantage in humans are scarce and limited to protein-coding sequences. Here, we attempt a genome-wide functional inference of advantageous heterozygosity at cis-regulatory regions. Results: The single-nucleotide polymorphisms bearing the signatures of balancing selection are enriched in active cis-regulatory regions of immune cells and epithelial cells, the latter of which provide barrier function and innate immunity. Examples associated with ancient trans-specific balancing selection are also discovered. Allelic imbalance in chromatin accessibility and divergence in transcription factor motif sequences indicate that these balanced polymorphisms cause distinct regulatory variation. However, a majority of these variants show no association with the expression level of the target gene. Instead, single-cell experimental data for gene expression and chromatin accessibility demonstrate that heterozygous sequences can lower cell-to-cell variability in proportion to selection strengths. This negative correlation is more pronounced for highly expressed genes and consistently observed when using different data and methods. Based on mathematical modeling, we hypothesize that extrinsic noise from fluctuations in transcription factor activity may be amplified in homozygotes, whereas it is buffered in heterozygotes. While high expression levels are coupled with intrinsic noise reduction, regulatory heterozygosity can contribute to the suppression of extrinsic noise. Conclusions: This mechanism may confer a selective advantage by increasing cell population homogeneity and thereby enhancing the collective action of the cells, especially of those involved in the defense systems in humansope

    One step forward, one step sideways? Expanding research capacity for neglected diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is general agreement, including from the pharmaceutical industry, that current market based methods of generating research into the development of pharmaceutical products that are relevant for developing countries do not work. This conclusion is relevant not just for the most neglected diseases such as leishmaniasis but even for global diseases such as cancer and cardiovascular disease.</p> <p>Discussion</p> <p>Stimulating research will mean overcoming barriers such as patent thickets, poor coordination of research activities, exclusive licensing of new technologies by universities and the structural problems that inhibit conducting appropriate clinical trials in developing countries. In addition, it is necessary to ensure that the priorities for research reflect the needs of developing countries and not just donors. This article will explore each of these issues and then look at three emerging approaches to stimulating research -paying for innovation, priority review sales or vouchers and public-private partnerships, - and evaluate their strengths and weaknesses.</p> <p>Summary</p> <p>All of the stakeholders agree that there is a pressing need for a major expansion in the level of R&D. Whatever that new model turns out to be, it will have to deal with the 5 barriers outlined in this paper. Finally, none of the three proposals considered here for expanding research is free from major limitations.</p

    Modulation of T Cell Function by Combination of Epitope Specific and Low Dose Anticytokine Therapy Controls Autoimmune Arthritis

    Get PDF
    Innate and adaptive immunity contribute to the pathogenesis of autoimmune arthritis by generating and maintaining inflammation, which leads to tissue damage. Current biological therapies target innate immunity, eminently by interfering with single pro-inflammatory cytokine pathways. This approach has shown excellent efficacy in a good proportion of patients with Rheumatoid Arthritis (RA), but is limited by cost and side effects. Adaptive immunity, particularly T cells with a regulatory function, plays a fundamental role in controlling inflammation in physiologic conditions. A growing body of evidence suggests that modulation of T cell function is impaired in autoimmunity. Restoration of such function could be of significant therapeutic value. We have recently demonstrated that epitope-specific therapy can restore modulation of T cell function in RA patients. Here, we tested the hypothesis that a combination of anti-cytokine and epitope-specific immunotherapy may facilitate the control of autoimmune inflammation by generating active T cell regulation. This novel combination of mucosal tolerization to a pathogenic T cell epitope and single low dose anti-TNFα was as therapeutically effective as full dose anti-TNFα treatment. Analysis of the underlying immunological mechanisms showed induction of T cell immune deviation

    RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation

    Get PDF
    Background: A gap exists in our mechanistic understanding of how genetic and environmental risk factors converge at the molecular level to result in the emergence of autism symptoms. We compared blood-based gene expression signatures in identical twins concordant and discordant for autism spectrum condition (ASC) to differentiate genetic and environmentally driven transcription differences, and establish convergent evidence for biological mechanisms involved in ASC. Methods: Genome-wide gene expression data were generated using RNA-seq on whole blood samples taken from 16 pairs of monozygotic (MZ) twins and seven twin pair members (39 individuals in total), who had been assessed for ASC and autism traits at age 12. Differential expression (DE) analyses were performed between (a) affected and unaffected subjects (N = 36) and (b) within discordant ASC MZ twin pairs (total N = 11) to identify environmental-driven DE. Gene set enrichment and pathway testing was performed on DE gene lists. Finally, an integrative analysis using DNA methylation data aimed to identify genes with consistent evidence for altered regulation in cis. Results: In the discordant twin analysis, three genes showed evidence for DE at FDR < 10%: IGHG4, EVI2A and SNORD15B. In the case-control analysis, four DE genes were identified at FDR<10% including IGHG4, PRR13P5, DEPDC1B, and ZNF501. We find enrichment for DE of genes curated in the SFARI human gene database. Pathways showing evidence of enrichment included those related to immune cell signalling and immune response, transcriptional control and cell cycle/proliferation. Integrative methylomic and transcriptomic analysis identified a number of genes showing suggestive evidence for cis dysregulation. Limitations: Identical twins stably discordant for ASC are rare, and as such the sample size was limited and constrained to the use of peripheral blood tissue for transcriptomic and methylomic profiling. Given these primary limitations, we focused on transcript-level analysis. Conclusions: Using a cohort of ASC discordant and concordant MZ twins, we add to the growing body of transcriptomic-based evidence for an immune-based component in the molecular aetiology of ASC. Whilst the sample size was limited, the study demonstrates the utility of the discordant MZ twin design combined with multi-omics integration for maximising the potential to identify disease-associated molecular signals

    Challenges and opportunities for integrating lake ecosystem modelling approaches

    Full text link
    corecore