2,948 research outputs found

    LP-Based Algorithms for Capacitated Facility Location

    Full text link
    Linear programming has played a key role in the study of algorithms for combinatorial optimization problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility location problem. A variety of algorithmic methodologies, such as LP-rounding and primal-dual method, have been applied to and evolved from algorithms for this problem. Unfortunately, this collection of powerful algorithmic techniques had not yet been applicable to the more general capacitated facility location problem. In fact, all of the known algorithms with good performance guarantees were based on a single technique, local search, and no linear programming relaxation was known to efficiently approximate the problem. In this paper, we present a linear programming relaxation with constant integrality gap for capacitated facility location. We demonstrate that the fundamental theories of multi-commodity flows and matchings provide key insights that lead to the strong relaxation. Our algorithmic proof of integrality gap is obtained by finally accessing the rich toolbox of LP-based methodologies: we present a constant factor approximation algorithm based on LP-rounding.Comment: 25 pages, 6 figures; minor revision

    Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal

    Get PDF
    In the Minimum Bounded Degree Spanning Tree problem, we are given an undirected graph G=(V,E) with a degree upper bound Bv on each vertex v∈V, and the task is to find a spanning tree of minimum cost that satisfies all the degree bounds. Let OPT be the cost of an optimal solution to this problem. In this paper, we present a polynomial time algorithm which returns a spanning tree T of cost at most OPT and dT(v)≤Bv+1 for all v, where dT(v) denotes the degree of v in T. This generalizes a result of Fürer and Raghavachari [1994] to weighted graphs, and settles a conjecture of Goemans [2006] affirmatively. The algorithm generalizes when each vertex v has a degree lower bound Av and a degree upper bound Bv, and returns a spanning tree with cost at most OPT and Av−1≤dT(v) ≤ Bv+1 for all v ∈ V. This is essentially the best possible. The main technique used is an extension of the iterative rounding method introduced by Jain [2001] for the design of approximation algorithms

    Approximating Minimum Cost Connectivity Orientation and Augmentation

    Get PDF
    We investigate problems addressing combined connectivity augmentation and orientations settings. We give a polynomial-time 6-approximation algorithm for finding a minimum cost subgraph of an undirected graph GG that admits an orientation covering a nonnegative crossing GG-supermodular demand function, as defined by Frank. An important example is (k,)(k,\ell)-edge-connectivity, a common generalization of global and rooted edge-connectivity. Our algorithm is based on a non-standard application of the iterative rounding method. We observe that the standard linear program with cut constraints is not amenable and use an alternative linear program with partition and co-partition constraints instead. The proof requires a new type of uncrossing technique on partitions and co-partitions. We also consider the problem setting when the cost of an edge can be different for the two possible orientations. The problem becomes substantially more difficult already for the simpler requirement of kk-edge-connectivity. Khanna, Naor, and Shepherd showed that the integrality gap of the natural linear program is at most 44 when k=1k=1 and conjectured that it is constant for all fixed kk. We disprove this conjecture by showing an Ω(V)\Omega(|V|) integrality gap even when k=2k=2
    corecore