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In the Minimum Bounded Degree Spanning Tree problem, we are given an undirected graph G = (V,E)

with a degree upper bound Bv on each vertex v ∈ V , and the task is to find a spanning tree of minimum
cost that satisfies all the degree bounds. Let OPT be the cost of an optimal solution to this problem. In
this paper, we present a polynomial time algorithm which returns a spanning tree T of cost at most OPT

and dT (v) ≤ Bv + 1 for all v, where dT (v) denotes the degree of v in T . This generalizes a result of Fürer
and Raghavachari [1994] to weighted graphs, and settles a conjecture of Goemans [2006] affirmatively. The
algorithm generalizes when each vertex v has a degree lower bound Av and a degree upper bound Bv , and
returns a spanning tree with cost at most OPT and Av − 1 ≤ dT (v) ≤ Bv + 1 for all v ∈ V . This is essentially
the best possible. The main technique used is an extension of the iterative rounding method introduced by
Jain [2001] for the design of approximation algorithms.
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1. INTRODUCTION

The Minimum Bounded Degree Spanning Tree (MBDST) problem is defined as follows:
Given an undirected graph G = (V,E), a cost function c ∶ E → R on the edges, and a
degree upper bound Bv on each vertex v ∈ V , find a spanning tree of minimum cost
that satisfies all the degree bounds. When all degree bounds are two (i.e. Bv = 2 for
all v), the MBDST problem specializes to the Minimum Cost Hamiltonian Path prob-
lem, and thus even the problem of checking whether there exists a feasible solution is
NP-complete. In unweighted graphs, Fürer and Raghavachari [1994] gave an elegant
algorithm that returns a spanning tree in which the degree of each vertex is at most
Bv + 1, or returns a witness certifying that the degree bounds are infeasible. It was
conjectured in Goemans [2006] that this result can be generalized to weighted graphs.
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CONJECTURE 1.1. In polynomial time, one can find a spanning tree of maximum
degree at most k + 1 whose cost is no more than the cost of a minimum cost tree with
maximum degree at most k.

Note that the above conjecture is formulated in the special case where Bv = k for
each vertex v ∈ V . Recently, Goemans [2006] made a major step towards proving this
conjecture by giving a polynomial time algorithm that returns a tree with maximum
degree k + 2, whose cost is at most the cost of a minimum cost tree with maximum de-
gree at most k. The algorithm also generalizes when there are different degree bounds
on different vertices, where the algorithm returns a spanning tree violating the degree
bounds by at most two. In this paper, we settle Conjecture 1.1 positively by proving the
following result.

THEOREM 1.2. There exists a polynomial time algorithm for the Minimum Bounded
Degree Spanning Tree problem that returns a tree T in which each vertex v ∈ V has
degree at most Bv+1 and the cost of the tree T is at most OPT, where OPT is the minimum
cost of a spanning tree which satisfies all degree bounds.

Theorem 1.2 also generalizes to the setting when there is a degree lower bound Av

and a degree upper bound Bv for each vertex v ∈ V . In this case, the algorithm returns
a spanning tree T such that Av − 1 ≤ dT (v) ≤ Bv + 1 for each vertex v ∈ V and the cost of
T is at most OPT, where OPT is the minimum cost of a spanning tree which satisfies all
degree (upper and lower) bounds. Note that we do not assume that the cost function
satisfies triangle inequalities (or even non-negativity). With this general cost function,
it is not possible to obtain any approximation algorithm if we insist on satisfying all
the degree upper bounds [Garey and Johnson 1979]1. Thus, Theorem 1.2 is essentially
the best possible.

1.1. Techniques

Polyhedral combinatorics has proved to be a powerful, coherent, and unifying tool
in combinatorial optimization [Schrijver 2003]. In the last two decades, polyhedral
methods have also been applied very successfully to the design of approximation algo-
rithms [Vazirani 2004]. A standard approach to design approximation algorithms is to
first formulate the problem as an integer program, and then use the linear relaxation
of this program as a way to lower-bound the cost of an optimal solution. We shall also
use this approach. Given an undirected graph G = (V,E) and a subset S of vertices, we
use E(S) = {e ∈ E ∶ ∣e ∩ S∣ = 2} to denote the set of edges which have both endpoints
in S ⊆ V . For any subset of edges F ⊆ E and vertices S ⊆ V , we denote δF (S) to be
the set of edges in F which have exactly one endpoint in S. When F = E, we drop the
subscript F from the notation. For any vertex v ∈ V , we let δF (v) denote δF ({v}) and
dF (v) = ∣δF (v)∣. For x ∶ E → R

+ and F ⊆ E, we denote x(F ) ∶= ∑e∈F x(e). Following
Goemans [2006], we use the following natural linear programming relaxation for the
Minimum Bounded Degree Spanning Tree problem.

1Assuming P ≠ NP, there is no p(n)-approximation which satisfies the degree bound exactly for any polyno-
mial p(n) of n where n is the number of vertices.
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Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal A:3

minimize c(x) = ∑
e∈E

ce xe

subject to x(E(V )) = ∣V ∣ − 1
x(E(S)) ≤ ∣S∣ − 1 ∀S ⊂ V
x(δ(v)) ≤ Bv ∀v ∈ V

xe ≥ 0 ∀ e ∈ E
Using a polyhedral approach, a general strategy is to construct a spanning tree of

cost no more than the optimal value of the above linear program, and in which the
degree of each vertex v ∈ V is at most Bv + 1. This would prove Theorem 1.2. In fact,
this general strategy has been used in previous work, and different techniques have
been proposed to “round” the above linear program. An important observation of Goe-
mans is that an extreme point solution of the above linear program is characterized by
a laminar family (definitions will be provided later) of tight constraints, inequalities
that are satisfied as equalities. This fact was exploited cleverly to obtain the result in
Goemans [2006].

We note that a very similar observation was made by Jain [2001] in his breakthrough
work on the Survivable Network Design problem, where he first introduced the idea of
iterative rounding to the design of approximation algorithms. This potential connection
was initiated in Lau et al. [2009], where Jain’s iterative rounding method was extended
to give the first constant factor (bi-criteria) approximation algorithm for bounded de-
gree network design problems including the Minimum Bounded Degree Steiner Tree
problem and the Bounded Degree Survivable Network Design problem. Inspired by
these results, we attempted Conjecture 1.1 using the iterative rounding method.

The basic setting of the iterative rounding method for network design problems goes
as follows. First, we solve the linear program to obtain an optimal extreme point so-
lution x∗. We proceed by adding the edges with the highest fractional value to the
integral solution. Then we construct the residual problem where the edges added pre-
viously are fixed, and update the linear program appropriately. A key feature of the it-
erative rounding method is to repeat this procedure: solve again the linear program for
the residual problem to obtain an optimal extreme point solution (instead of using x∗),
and add the edges with the highest fractional value in this new fractional solution to
the integral solution. This procedure is iterated until the integral solution constructed
is a feasible solution. In the Survivable Network Design problem, the crucial theorem
in Jain’s approach is that the edges picked in each iteration have fractional value at
least 1/2, which ensures that the above algorithm has an approximation ratio of two.
This theorem relies heavily on the properties of an extreme point solution, as in the
work of Goemans [2006].

Our first contribution is to extend the iterative rounding method and show that it
can be used to solve problems optimally. This is achieved by setting integral variables;
an variable e such that xe = 0 is removed and a variable e with xe = 1 is picked in the
solution. One then formulates the residual problem and iterates. The technical claim
is to show that one can always find an integral variable in each iteration. We apply
this approach to the minimum spanning tree problem and give two different proofs of
the integrality of the spanning tree polyhedron in Section 2.

For the Minimum Bounded Degree Spanning Tree problem, however, the direct ap-
proach of iterative rounding would not work. The standard iterative rounding frame-
work of picking an edge e with x∗e ≥ 1/2 would not work because we can not guarantee
the optimality (with respect to the cost of the linear program) of the solution. The
latter approach of picking integral edges would not work since we do not expect the
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linear programming solution to only have integral values. Our algorithm uses the iter-
ative relaxation framework as introduced in Lau et al. [2009]. The key insight is that
if the algorithm cannot find integral edges to pick, then it can remove/relax one of the
degree constraints. In particular, we find a vertex with degree upper bound Bv and
with at most Bv + 1 edges incident on it in the support of an extreme point solution.
The algorithm then removes the degree constraint of v and proceeds to re-solve the
linear program. The heart of our analysis is to show that one can always find such a
vertex. This is proved by a counting argument which relies heavily on the fact that an
extreme point solution is characterized by a laminar family of tight constraints [Jain
2001; Goemans 2006]. Since the algorithm only picks integral edges, the optimality
of the cost follows naturally. The condition when the degree constraint of a vertex is
removed ensures that the degree constraint can be violated by at most one, giving us
Theorem 1.2.

1.2. Related Work

The Minimum Bounded Degree Spanning Tree problem is a well studied problem and
has been attacked using a variety of techniques. Initial efforts on the problem were
concentrated on obtaining bi-criteria approximation algorithms. Let OPT be the cost
of an optimal solution to the MBDST problem. An (α, f(Bv))-approximation algo-
rithm2 is an algorithm which returns a spanning tree T with cost at most α ⋅ OPT and
dT (v) ≤ f(Bv) for all v, where dT (v) denotes the degree of v in T . Ravi et al. [1993] gave
an (O(logn),O(Bv logn))-approximation for the MBDST problem using a matching-
based augmentation technique. Konemann and Ravi [2002; 2005] used a Lagrangian-
relaxation based approach to obtain an (O(1),O(Bv + logn))-approximation algorithm.
Chaudhuri et al [2009b; 2009a] presented an (1,O(Bv + logn))-approximation al-
gorithm, and an (O(1),O(Bv))-approximation algorithm based on the push-relabel
framework developed for the maximum flow problem. Ravi and Singh [2006] consid-
ered a variant of the problem in which the tree returned must be a minimum spanning
tree, and gave an algorithm that returns an MST in which the degree of any vertex v is
at most Bv + p, where p is the number of distinct costs in any MST. Recently, Goemans
[2006] presented an (1,Bv + 2)-approximation algorithm using matroid intersection
techniques. This was the previous best guarantee for the MBDST problem. In the spe-
cial case where the graph is unweighted, Fürer and Raghavachari [1994], building on
the work of Win [1989], gave an algorithm that returns a spanning tree in which the
degree of each vertex v is at most Bv + 1 or returns a witness certifying infeasibility of
the degree bounds.

The iterative rounding technique that we use in our algorithm was developed in Jain
[2001] for the Survivable Network Design problem and has later been successfully ap-
plied to various problems [Cheriyan et al. 2006; Fleischer et al. 2006]. Recently, this
technique has been extended to give constant factor bi-criteria approximation algo-
rithm for the Bounded Degree Survivable Network Design problem [Lau et al. 2009;
Lau and Singh 2008].

1.3. Organization

The rest of the paper is organized as follows. In Section 2, we give two iterative al-
gorithms which shows the integrality of the spanning tree polyhedron. Then, in Sec-
tion 3, we present a new proof of the result of Goemans [2006] that gives an (1,Bv +2)-
approximation algorithm for the MBDST problem. In Section 4, we present the main
algorithm and the proof of Theorem 1.2. Both the results for the MBDST problem build

2Notice that the first parameter is used to specify the ratio, while the second parameter is used to specify
the actual bound.
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on the iterative algorithms for the spanning tree problem given in Section 2. Finally,
in section 5, we extend the algorithm to deal with degree lower bounds.

2. SPANNING TREE POLYHEDRON

In this section, we present two iterative arguments to show that the minimum span-
ning tree polytope is integral. This motivates the main result of the paper and illus-
trates the basic proof techniques.

2.1. Linear Program

Let G = (V,E) be a graph with a cost function c on edges. A classical result of Ed-
monds Edmonds [1971] states that the following linear program LP-MST(G) is inte-
gral, and an optimal extreme point solution is always a minimum spanning tree.

minimize c(x) = ∑
e∈E

ce xe (1)

subject to x(E(V )) = ∣V ∣ − 1 (2)

x(E(S)) ≤ ∣S∣ − 1 ∀S ⊂ V (3)

xe ≥ 0 ∀ e ∈ E (4)

2.2. Characterization of the Extreme Point Solutions

An extreme point solution is defined as the unique solution of m linearly independent
tight constraints (constraints which achieve equality), where m denotes the number
of variables in the linear program. We focus on extreme point solutions x∗ such that
x∗e > 0 for each e ∈ E. We first define some basic definitions. For a set F ⊆ E, we define
the characteristic vector of F in R

∣E∣, χ(F ), as the vector that has an 1 corresponding to
each edge e ∈ F , and 0 otherwise. For any set family F ⊆ 2V , let span(F) be the vector
space generated by the set of vectors {χ(E(S)) ∣ S ∈ F}. Given a set V , subsets S and T

are called intersecting if S ∖ T and T ∖ S are both non-empty. A family of sets L ⊆ 2V is
laminar if any two sets in the family are not intersecting, i.e., for any two sets in the
family, either one contains the other or they are disjoint.

LEMMA 2.1. Let x∗ be any extreme point solution to LP-MST(G) such that x∗e > 0
for each edge e ∈ E and let F = {S ⊆ V ∣ x∗(E(S)) = ∣S∣ − 1} be the collection of sets
corresponding to tight constraints. Then there exists a laminar family L ⊆ F such that

(1) The set of vectors {χ(E(S)) ∶ S ∈ L} are linearly independent and span(L) =
span(F).

(2) ∣L∣ = ∣E∣.
(3) x∗ is the unique solution to the set of equations {x(E(S)) = ∣S∣ − 1 ∶ S ∈ L}.

The proof of Lemma 2.1 is quite standard [Cornuéjols et al. 1985; Jain 2001], but we
include it for completeness. It also illustrates the uncrossing technique.

PROOF. First, we need the following uncrossing lemma on intersecting sets among
tight sets.

LEMMA 2.2 ([GOEMANS 2006]). If S,T ∈ F and S∩T ≠ ∅, then both S∩T and S∪T
are in F . Furthermore, χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).
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PROOF. As S ∩ T ≠ ∅, we have:

∣S∣ − 1 + ∣T ∣ − 1 = ∣S ∩ T ∣ − 1 + ∣S ∪ T ∣ − 1
≥ x∗(E(S ∩ T ))+ x∗(E(S ∪ T ))
≥ x∗(E(S))+ x∗(E(T ))
= ∣S∣ − 1 + ∣T ∣ − 1,

and hence we have equality throughout. This implies that S ∪ T and S ∩ T are both
in F , and furthermore there are no edges e ∈ E∗ between S ∖ T and T ∖ S. Therefore,
χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).

Now, we show that any maximal laminar family in F suffices for the proof.

LEMMA 2.3 ([JAIN 2001]). If L′ is a maximal laminar subfamily of F , then
span(L′) = span(F).

PROOF. Let L′ be a maximal laminar subfamily of F and assume that χ(E(S)) ∉
span(L′) for some S ∈ F . Choose one such set S that intersects as few sets of L′ as
possible. Since L′ is a maximal laminar family, there exists T ∈ L′ that intersects S.
From Lemma 2.2, we have that S ∩ T and S ∪ T are also in F and that χ(E(S)) +
χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )). Since χ(E(S)) ∉ span(L′), either χ(E(S ∩ T )) ∉
span(L′) or χ(E(S ∪ T )) ∉ span(L′). In either case, we have a contradiction because
both S ∪ T and S ∩ T intersect fewer sets in L′ than S; this is because every set in L′
that intersects S ∪ T or S ∩ T must intersect S.

A maximal subfamily L of L′ such that {χ(E(S)) ∶ S ∈ L} is linearly independent
suffices to prove property (1). And property (2) and property (3) follow from property (1)
and the fact that x∗ is an extreme point solution.

Any laminar family L defines a directed forest L in which nodes correspond to sets in
L and there exists an edge from set R to set S if R is the smallest set containing S. We
call R the parent of S and S a child of R. For clarity, we will refer the vertices of forest
L by nodes. A node with no parent is called a root and a node with no child is called a
leaf. Given a node R, the subtree rooted at R consists of R and all its descendants. The
following fact is standard and follows easily from induction.

FACT 2.4. Let L ⊂ 2V be a laminar family over ground set V . Then ∣L∣ ≤ 2∣V ∣− 1 and
if each set in L has size at least two then ∣L∣ ≤ ∣V ∣ − 1.

2.3. Iterative Algorithm

Iterative MST Algorithm I

(1) Initialization T ← ∅.
(2) While V (G) /= ∅ do

(a) Find an optimal extreme point solution x∗ of LP-MST(G) and remove every
edge e with x∗e = 0 from G.

(b) Find a vertex v with at most one edge e = uv incident at it, and update T ←
T ∪ {e}, G← G ∖ {v}.

(3) Return T .

Fig. 1. MST Algorithm I
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The iterative MST Algorithm I is given in Figure 1. To prove the correctness of the
algorithm, we prove the following two lemmas. First, we prove that the algorithm will
terminate.

LEMMA 2.5. For any extreme point solution x∗ to the LP-MST(G) with x∗e > 0 for
every edge e, there exists a vertex v with d(v) = 1.

PROOF. Suppose to the contrary that each vertex is of degree at least two. Then
∣E∣ = 1

2
∑v∈V d(v) ≥ ∣V ∣. On the other hand, since there is no edge e with x∗e = 0, every

tight inequality is of the form x∗(E(S)) = ∣S∣ − 1. By Lemma 2.1, there are ∣L∣ linearly
independent tight constraints of the form x∗(E(S)) = ∣S∣ − 1, where L is a laminar
family with no singleton sets. Moreover, we have ∣E∣ = ∣L∣. From Fact 2.4, we have that
∣L∣ ≤ ∣V ∣ − 1 which is a contradiction.

Next, we show that the returned solution is a minimum spanning tree in the follow-
ing lemma.

LEMMA 2.6. The Iterative MST Algorithm I returns a minimum spanning tree.

PROOF. This is proved by induction on the number of iterations of the algorithm.
If the algorithm finds a vertex v of degree one (a leaf vertex) in Step 2b with an edge
e = {u, v} incident at v, then we must have x∗e = 1 since x(δ(v)) ≥ 1 is a valid inequality
of the LP (subtracting the constraint x(E(V −v)) ≤ ∣V ∣−2 from the constraint x(E(V )) =
∣V ∣ − 1). Observe that the residual problem is to find a minimum spanning tree on
G′ = G∖v, and the same procedure is applied to solve the residual problem recursively.

Since x∗e = 1, the restriction of x∗ to E(G′), denoted by x∗res, is a feasible solution to
the LP-MST(G′). Therefore, inductively, the algorithm will return a spanning tree T ′

of G′ of cost at most the optimal value of the LP-MST(G′), and hence c(T ′) ≤ c ⋅ x∗res.
Therefore,

c(T ) = c(T ′) + ce and c(T ′) ≤ c ⋅ x∗res,
which imply that

c(T ) ≤ c ⋅ x∗res + ce = c ⋅ x∗
as x∗e = 1. This shows that the algorithm returns a minimum spanning tree of the
graph.

Remark 2.7. If x∗ is an optimal extreme point solution to LP-MST(G), then the
residual LP solution x∗res, x restricted to G′ = G ∖ v remains an optimal extreme point
solution to LP-MST(G′). Hence, in the iterative MST algorithm I, we only need to solve
the original linear program once and none of the residual linear programs.

We give another algorithm which achieves the same guarantee as the previous algo-
rithm but is even simpler. Instead of finding integral edges one by one, we can directly
prove that all the variables must be integral by a similar counting argument.

Iterative MST Algorithm II

(1) Find an optimal extreme point solution x∗ to the LP-MST(G) and remove every
edge e with x∗e = 0 from E.

(2) Return T = {e ∶ x∗e > 0}.
Fig. 2. Iterative MST Algorithm II

LEMMA 2.8. Iterative MST Algorithm II returns a minimum spanning tree of G.
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PROOF. We first claim that ∣T ∣ = ∣V ∣ − 1 where T is the set of edges returned by the
algorithm. Since T is the support of x∗, and we have x∗(E) = ∣V ∣ − 1 and x∗e ≤ 1 for each
edge e ∈ E, we must have ∣T ∣ ≥ ∣V ∣−1. Moreover, since x∗ is extreme, we must have that
the number of non-zero edges ∣T ∣ equals the size of a laminar family L defining x∗ as
given by Lemma 2.1. Since, ∣L∣ ≤ ∣V ∣ − 1 we have ∣T ∣ ≤ ∣V ∣ − 1 giving us the equality.

Then we also have that x∗e = 1 for each edge e ∈ T . Thus x∗ is an integral feasible
solution to LP-MST(G) and therefore T is a minimum spanning tree.

3. A +2 APPROXIMATION ALGORITHM

In this section we prove the following theorem using the iterative relaxation technique.

THEOREM 3.1 ([GOEMANS 2006]). There exists a polynomial time algorithm for
the Minimum Bounded Degree Spanning Tree problem that returns a spanning tree T
such that c(T ) ≤ opt and dT (v) ≤ Bv + 2 for each vertex v ∈ V , where opt is the cost of the
optimal solution satisfying all degree bounds exactly.

3.1. Linear Programming Relaxation

We use the following standard linear programming relaxation for the MBDST prob-
lem, which we denote by LP-MBDST(G,W ). In the following, we assume that degree
bounds are given for vertices only in a subset W ⊆ V .

minimize c(x) = ∑
e∈E

ce xe (5)

subject to x(E(V )) = ∣V ∣ − 1 (6)

x(E(S)) ≤ ∣S∣ − 1 ∀S ⊂ V (7)

x(δ(v)) ≤ Bv ∀v ∈W (8)

xe ≥ 0 ∀ e ∈ E (9)

Observe that LP-MBDST(G,W ) has an exponential number of constraints. Cun-
ningham [1984] gave a polynomial time procedure to separate over constraints (6)-(7)
and (9). Separating over constraints (8) is clearly in polynomial time. Hence, using the
ellipsoid algorithm one can optimize over LP-MBDST(G,W ) in polynomial time.

3.2. Characterization of Extreme Point Solutions

We show the following lemma which characterizes any extreme point solution with a
family of tight constraints.

LEMMA 3.2. Let x∗ be an extreme point solution of LP-MBDST(G,W ) with support
E∗. Then there exists a set X ⊆ W and a laminar family L such that x∗ is the unique
solution to the following linear system.

{ x∗(δ(v)) = Bv ∀v ∈X
x∗(E(S)) = ∣S∣ − 1 ∀S ∈ L

Moreover, the characteristic vectors {χ(E(S)) ∶ S ∈ L} ∪ {χ(δ(v)) ∶ v ∈ X} are linearly
independent. Furthermore, ∣E∗∣ = ∣L∣ + ∣X ∣.

PROOF. The proof follows the same lines as the proof of Lemma 2.1. Let τ = {S ⊆
V ∶ x∗(E(S)) = ∣S∣ − 1} be the set of all tight constraints from (6) and (7). Following
the same uncrossing arguments as in Lemma 2.1, we obtain that there is a laminar
family L ⊆ τ such that span(τ) = span(L) and constraints corresponding to sets in L
are linearly independent. Let X be a maximal set of vertices such that x∗(δ(v)) = Bv

for each v ∈ X and the constraints in X are linearly independent with constraints in
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L. By construction, the constraints corresponding to sets in L and vertices in τ are
maximally linearly independent and therefore ∣E∗∣ = ∣L∣ + ∣X ∣.
3.3. Iterative Algorithm

Our algorithm proving Theorem 3.1 is given in Figure 3. It is a simple iterative algo-
rithm and an extension of Iterative MST Algorithm I. The main addition is Step (2c)
that iteratively relaxes degree constraints.

MBDST Algorithm I

(1) Initialization T ← ∅, W ← V .
(2) While V (G) /= ∅ do

(a) Find an optimal extreme point solution x∗ to LP-MBDST(G,W ) and remove
every edge e with x∗e = 0 from G. Let the support of x∗ be E∗.

(b) If there exists a vertex v ∈ V with at most one edge e = uv incident at v in E∗,
then update T ← T ∪ {e}, G← G ∖ {v}, W ←W ∖ {v}, and Bu ← Bu − 1.

(c) If there exists a vertex v ∈W with dE∗(v) ≤ 3, then update W ←W ∖ {v}.
(3) Return T .

Fig. 3. MBDST Algorithm I

The correctness of the algorithm follows from the following two lemmas.

LEMMA 3.3. Suppose that the MBDST Algorithm I returns T in Step (3). Then T
is a spanning tree of cost at most c(x∗) where x∗ is the optimal LP solution to LP-
MBDST(G,V ), and the degree of vertex v in T is at most Bv + 2 for each vertex v ∈ V .

PROOF. Assuming that the algorithm returns a solution T in Step (3), then the fact
that T is a spanning tree of cost at most c(x∗) follows from an argument identical to
that in the proof of Lemma 2.6. The degree bound follows simply as well. While a vertex
is in W , the degree constraint is satisfied exactly by the current fractional solution. If
a vertex v is removed from W in Step (2c), it has only three edges incident at it and the
residual degree bound Bv is at least one. Thus, even if the algorithm picks all three
edges incident at v, the degree bound is violated by at most two.

In the next lemma, we prove that in each iteration we can proceed by applying either
Step 2b or Step 2c; this will ensure that the algorithm terminates.

LEMMA 3.4. Any extreme point solution x∗ to LP-MBDST(G,W ) with support E∗

must satisfy one of the following.
(a) There is a vertex v ∈ V with dE∗(v) = 1.
(b) There is a vertex v ∈W with dE∗(v) ≤ 3.

PROOF. Suppose by contradiction that both (a) and (b) are not satisfied. Then every
vertex has at least two edges incident on it and every vertex in W has at least four
edges incident on it. Therefore, ∣E∗∣ ≥ (2(n − ∣W ∣) + 4∣W ∣)/2 = n + ∣W ∣, where n = ∣V (G)∣.

By Lemma 3.2, there is a laminar family L and a set X ⊆ W of vertices such that
∣E∗∣ = ∣L∣ + ∣X ∣. As L contains subsets of size at least two, ∣L∣ ≤ ∣V ∣ − 1. Hence, ∣E∗∣ =
∣L∣ + ∣X ∣ ≤ ∣V ∣ − 1 + ∣X ∣ ≤ ∣V ∣ − 1 + ∣W ∣, a contradiction.

In each iteration, we either remove a degree constraint or include an edge in our
solution. Therefore, in a total of at most ∣V ∣ + ∣V ∣ − 1 = 2∣V ∣ − 1 iterations, we construct
a spanning tree. These steps provide a simple (1,Bv + 2)-approximation algorithm for
the MBDST problem.
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4. A +1 APPROXIMATION ALGORITHM

In this section, we give an algorithm that proves Theorem 1.2. The algorithm is an
extension of the Iterative MST Algorithm II and is given in Figure 4. In each step
of the algorithm, we find an appropriately chosen vertex whose degree constraint is
present and remove the degree constraint. Finally, when all the degree constraints are
removed, we return the support of the linear programming solution. This is guaranteed
to be a spanning tree following from the analysis of Iterative MST Algorithm II in
Lemma 2.8.

MBDST Algorithm II

(1) Let W ← V .
(2) While W /= ∅ do

(a) Find an optimal extreme point solution x∗ to LP-MBDST(G,W ) and remove
every edge e with x∗e = 0 from G. Let the support of x∗ be E∗.

(b) If there exists a vertex v ∈ W such that dE∗(v) ≤ Bv + 1 then update W ←
W ∖ {v}.

(3) Find an optimal extreme point solution x∗ of LP-MBDST(G,∅) and remove every
edge e with x∗e = 0 from G.

(4) Return T , the support of x∗.

Fig. 4. MBDST Algorithm II

We argue the correctness of the algorithm in the following two lemmas. In the first
part, we assume that the algorithm does terminate and returns the set T when W =
∅, and show that the solution returned satisfies the claimed guarantee. In the next
lemma, we show that in each iteration, the algorithm finds a vertex v ∈ W satisfying
the condition in Step (2b).

LEMMA 4.1. Suppose the MBDST Algorithm II returns T in Step (4), then T is
a spanning tree of cost at most c(x∗) where x∗ is the optimal LP solution to LP-
MBDST(G,V ) and degree of vertex v in T is at most Bv + 1 for each vertex v ∈ V .

PROOF. First we show that T is a tree. At the end of the last iteration, let G′ de-
note the current graph where edges with fractional value zero have been removed in
previous iterations. The algorithm then solves LP-MBDST(G′,∅) which is exactly the
same as linear program LP-MST(G′). Thus, from Lemma 2.8, the optimal solution to
the linear program is integral and T is a spanning tree. It is straightforward to check
that the optimal linear programming solution of any iteration remains feasible for the
next iteration, since we either remove a constraint or remove edges which are set to
zero by the fractional solution. Thus the cost of the optimal solution in next iteration
does not increase. Therefore, the cost of T is at most the cost of the optimal solution to
the initial linear program LP-MBDST(G,W ).

Next, we argue that the degree of each vertex v ∈ V in the returned solution T is at
most Bv + 1. Let v be any vertex and consider the iteration when the degree constraint
of v is removed. Let E∗ be the support of the linear programming solution in that
iteration. We have dE∗(v) ≤ Bv + 1 and in any further iteration we only remove edges
incident at this vertex and never add any other edge. Thus the final solution T ⊆ E∗

and therefore dT (v) ≤ Bv + 1 as claimed.

In the next lemma, we show that the algorithm does perform correctly and returns
a solution. We describe a simpler proof due to Bansal et al. [2008].
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LEMMA 4.2. Let x∗ be an extreme point solution to LP-MBDST(G,W ) and E∗ = {e ∶
x∗e > 0}. If W ≠ ∅ then there exists a v ∈W such that dE∗(v) ≤ Bv + 1.

PROOF. Let X ⊆W be the tight degree constraints and L be laminar family as given
by Lemma 2.1. If X = ∅, then Lemma 2.8 implies that E∗ is a tree and x∗e = 1 for each
e ∈ E∗. Thus, dE∗(v) = x∗(δ(v)) ≤ Bv for each v ∈ W and we are done. In the rest we
assume that X ≠ ∅.

Suppose to the contrary that dE∗(v) ≥ Bv + 2 for each v ∈ W . We now show a con-
tradiction by a counting argument. We give one token to each edge in E∗. We then
redistribute the token such that each vertex in X and each set in L gets one token and
we still have extra tokens left. This will contradict ∣E∗∣ = ∣X ∣ + ∣L∣. The token redistri-
bution is as follows. Each edge e ∈ E∗ gives x∗e fractional token to the smallest set in L
containing both endpoints of e, and (1 − x∗e)/2 fractional token to each of its endpoints
for the degree constraints, if present.

We show that each set S ∈ L obtains one token. S receives x∗e token for each edge
e such that S is the smallest set containing both endpoints of e. Let R1, . . . ,Rk be the
children of S in the laminar family L where k ≥ 0. We have

x∗(E(S)) = ∣S∣ − 1, and
x∗(E(Ri)) = ∣Ri∣ − 1 for each 1 ≤ i ≤ k

Ô⇒ x∗(E(S))−
k

∑
i=1

x∗(E(Ri)) = ∣S∣ − 1 −
k

∑
i=1

(∣R∣i − 1)

Ô⇒ x∗(A) = ∣S∣ − 1 − k

∑
i=1

(∣Ri∣ − 1),

where A = E(S)∖(∪k
i=1E(Ri)). Observe that S receives x∗e tokens for each edge e ∈ A for

a total of x∗(A) tokens which is an integer by the above equation. If x∗(A) = 0 then A =
∅ and therefore, χ(E(S)) = ∑k

i=1 χ(E(Ri)) which contradicts the linear independence
of the constraints. Hence, each set S receives at least one token.

Now, we show that each vertex with a tight degree constraint gets one token. Let
v ∈ X be such a vertex. Then v receives (1 − x∗e)/2 token for each edge incident at v for
a total token of value

∑
e∈δ

E∗
(v)

1 − x∗e
2
= dE∗(v) −Bv

2
≥ 1,

where the first equality holds since ∑e∈δ
E∗
(v) x

∗
e = Bv and the inequality holds since

dE∗(v) ≥ Bv + 2.
To finish the proof, we argue that there is some extra token left for contradiction.

If V ∉ L, then there exists an edge e which is not contained in any set of L and the
x∗e token for that edge gives us the contradiction. Similarly, if there is a vertex v ∈
W ∖ X then v also collects one token which it does not need and we get the desired
contradiction. Moreover, if there is a vertex v ∈ V ∖X then each edge e incident at v
must have x∗e = 1; otherwise the (1 − x∗e)/2 > 0 token is extra. Note that χ(e) ∈ span(L)
for each e with x∗e = 1, since e is a tight set of size two. We have

2χ(E(V )) = ∑
v∈V

χ(δ(v)) = ∑
v∈X

χ(δ(v)) + ∑
v∈V −X

χ(δ(v)) = ∑
v∈X

χ(δ(v)) + ∑
v∈V −X

∑
e∈δ(v)

χ(e).

We have argued that V ∈ L and χ(e) ∈ span(L) for each edge e ∈ δ(v) for v ∈ V −X . Since
X ≠ ∅, this implies the linear independence of the tight constraints in X and those in
L, giving us the contradiction.
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5. UPPER AND LOWER DEGREE BOUNDS

In this section, we consider an extension of the MBDST problem in which a degree
lower bound Av and a degree upper bound Bv are given for each vertex v, and the goal
is to find a tree of minimum cost satisfying both upper and lower degree bounds. We
prove the following theorem.

THEOREM 5.1. There is a polynomial time algorithm for the Minimum Bounded
Degree Spanning Tree problem with upper and lower degree constraints which returns
a tree T such that Av − 1 ≤ dT (v) ≤ Bv + 1 for each v ∈ V and c(T ) ≤ opt, where opt is the
cost of the optimal tree satisfying degree bounds exactly.

5.1. Linear Programming Relaxation

We assume the degree bounds are given on a subset of vertices W ⊆ V . The following
is a linear programming relaxation for the MBDST problem, which is denoted by LP-
MBDST(G,W,F ). The edge set F denotes the set of edges which the linear program
has assigned a value of one. We maintain that in all further iterations edges in F will
be chosen integrally.

minimize c(x) = ∑
e∈E

ce xe

subject to x(E(V )) = ∣V ∣ − 1
x(E(S)) ≤ ∣S∣ − 1 ∀S ⊆ V
x(δ(v)) ≥ Av ∀v ∈W
x(δ(v)) ≤ Bv ∀v ∈W

xe = 1 ∀ e ∈ F
xe ≥ 0 ∀ e ∈ E

5.2. Characterization of Extreme Point Solutions

We give the following characterization of the extreme point solutions of LP-
MBDST(G,W,F ). The proof of the following lemma is similar to the proof of
Lemma 3.2.

LEMMA 5.2. Let x∗ be any extreme point solution to LP-MBDST(G,W,F ). Then
there exists a set XL ⊆ W , a set XU ⊆ W and a laminar family L such that x∗ is the
unique solution to the following linear system.

⎧⎪⎪
⎨
⎪⎪⎩

x∗(δ(v)) = Av ∀v ∈ XL

x∗(δ(v)) = Bv ∀v ∈ XU

x∗(E(S)) = ∣S∣ − 1 ∀S ∈ L
Moreover,

(1) the vectors {χ(E(S)) ∶ S ∈ L} ∪ {χ(δ(v)) ∶ v ∈ XL} ∪ {χ(δ(v)) ∶ v ∈ XU} are linearly
independent.

(2) ∣E∗∣ = ∣L∣ + ∣XL∣ + ∣XU ∣.
(3) Let C denote the set of vertex sets of the non-trivial connected components spanned

by edges in F . Then C ⊆ L.

PROOF. The proof follows along the same lines as in the proofs of Lemma 2.1 and
Lemma 3.2. Let τ = {S ⊆ V ∶ x∗(E(S)) = ∣S∣−1} be the set of all tight spanning tree con-
straints in LP-MBDST(G,W,F ). By uncrossing arguments, we can choose any max-
imal laminar L such that the constraints for sets in L are linearly independent to
ensure that span(L) = span(τ). Since the constraint for each set S ∈ C is tight and all
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these constraints are linearly independent, we can choose a laminar family L such that
C ⊆ L. Rest of the conditions follow simply by choosing a maximal collection of vertices
with tight degree constraints XL and XU while ensuring linear independence.

5.3. Iterative Algorithm

The algorithm is given in Figure 5. In each iteration, we either pick an integral edge
or remove one of the degree constraints. Due to presence of upper and lower degree
constraints, we only remove degree constraints on vertices which have at most two
strictly fractional edges incident at them.

MBDST Algorithm III

(1) Initialize F ← ∅, W ← V .
(2) While F is not a spanning tree do

(a) Find an optimal extreme point solution x∗ to LP-MBDST(G,W,F ) and remove
every edge e with x∗e = 0 from G.

(b) If there exists an edge e = {u, v} such that x∗e = 1, then F ← F ∪ {e}.
(c) If there exists a vertex v ∈W such that there are at most two edges incident at

v with 0 < x∗e < 1, then update W ←W ∖ {v}.
(3) Return F .

Fig. 5. MBDST Algorithm III

For the correctness of the MBDST Algorithm III, we shall prove the following key
lemma, which will ensure that the algorithm terminates.

LEMMA 5.3. An extreme point solution x∗ of LP-MBDST(G,W,F ) with support E∗

must satisfy one of the following.
(a) There is an edge e ∈ E∗ ∖F such that x∗e = 1 or x∗e = 0.
(b) There is a vertex v ∈ W such that there at most two edges incident at v with

fractional value strictly between 0 and 1.

Before we prove Lemma 5.3, we use it to prove Theorem 5.1.
Proof of Theorem 5.1: Lemma 5.3 ensures that in each iteration we either remove a
degree constraint or reduce the number of strictly fractional edges. It is also straight-
forward to see that the same linear programming solution remains an extreme point
solution after we apply Step 2a or 2b, and we need to resolve the linear program only
after we apply Step 2c. Hence, the algorithm will terminate in at most ∣V ∣ iterations.
Moreover, the linear programming solution at any iteration is feasible to the linear
program solved in the next iteration. Thus the cost of the optimal solution to the lin-
ear programming formulation can only decrease. Hence, the cost of the final solution
returned is at most the cost of the optimal fractional solution to the initial linear pro-
gram, which is a lower bound on the optimum.

Consider any vertex v ∈ V . We argue that both upper and lower degree constraint
are satisfied within an additive error of one. Consider the iteration when the constraint
for vertex v is removed. Let x∗ denote the optimal fractional solution obtained in this
iteration, F ′ = {e ∶ x∗e = 1} denote the set of edges with fractional value one, and E∗ =
{e ∶ x∗e > 0} denote the support of x∗. Since the constraint for vertex v is removed in
this iteration, we have that dE∗∖F ′(v) ≤ 2. Since every edge in F ′ incident at v will be
present in the final tree F returned by the algorithm, dF (v) ≥ dF ′(v) ≥ ⌊x∗(δE∗(v))⌋−1 ≥
Av − 1, where we use the fact that δE∗(v) has at most two fractional edges. Similarly,
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F can contain at most two more edges incident at v that are not included in F ′. Thus
dF (v) ≤ dF ′(v) + 2 ≤ ⌈x∗(δE∗(v))⌉ + 1 ≤ Bv + 1. ◻

It remains to complete the proof of Lemma 5.3.
Proof of Lemma 5.3: Let L be the laminar family and X ∶= XL ∪XU be the vertices
defining the solution x∗ as in Lemma 5.2. Suppose that both (a) and (b) of Lemma 5.3
are not satisfied. We shall derive that ∣L∣ + ∣X ∣ < ∣E∗∣, which will contradict Lemma 5.2
and complete the proof. We also let E′ = E∗ ∖F be the set of edges which are fractional
in the linear programming solution x∗.

As before, we do this by a counting argument. We first assign two tokens for each
edge e for a total of 2∣E∗∣ tokens. In the first assignment, if e ∈ E′, i.e., x∗uv < 1, it gives
one token to each of its endpoints u and v. If e ∈ F , i.e., x∗uv = 1, it gives both of its
tokens to the smallest set in L containing both u and v.

Let S ∈ C be the vertex set of any non-trivial connected component of F . We first show
that the tokens from edges in F are enough to give two tokens to each set in R ∈ L such
that R ⊆ S.

CLAIM 5.4. The tokens assigned by edges in F are enough to give two tokens to each
member R ∈ L such that R ⊆ S for some S ∈ C.

PROOF. Observe that every edge e with both endpoints in R must be in F and
therefore x∗e = 1. Let R1, . . . ,Rk be the children of R in forest L. Then we have
E∗(R) ∖ ∪iE∗(Ri) ≠ ∅, since the constraint for set R is independent of the constraints
for set Ri’s. So, any edge e ∈ E∗(R) ∖ ∪iE∗(Ri) gives two tokens to R as claimed.

We now argue that enough tokens are assigned to rest of the sets in L and vertices
in X by a careful inductive argument. We first construct a new laminar family of the
remaining sets. We remove all sets from L that are strictly contained in some S ∈ C.
We also add all singleton sets {v} that are not contained in any S ∈ C to the laminar
family. We call the new laminar family L′ and L′ be the forest associated with laminar
family L′. By construction, leaves of L′ are either sets of size one or sets in C and form
a partition of V . Similarly, for any node S, the set of children of S forms a partition of
S.

Observe that sets in C do not need to be assigned any new tokens since edges in F
assign them two token by Claim 5.4. Similarly sets of size one, {v} where v ∉ X do
not need any tokens. But we include them in L′ for induction. Let Y denote the set of
vertices which have an edge in E′ incident on them. We call the vertices in Y active.
Observe that in the initial assignment each vertex in X gets at least three tokens
since it has at least three edges from E′ incident on it. Since we need to assign only
two tokens to the degree constraint, it has at least one extra token. An active vertex
not in X does not need any token. Thus every active vertex has at least one extra
token. These extra tokens will be carefully reassigned to sets in L′.

The following definition gives a characterization of those sets which need a careful
analysis.

Definition 5.5. A set S ∈ L′ such that S ≠ V is special if:

(1) ∣δE′(S)∣ = 3;
(2) x∗(δE′(S)) = 1 or x∗(δE′(S)) = 2;
(3) χ(δE′(S)) is a linear combination of the characteristic vectors of its descendants

(including possibly χ(E′(S))) and the characteristic vectors χ(δE′(v)) of v ∈ S ∩X .

From now on, to reduce notation, we drop the subscript E′ in dE′ and δE′ .

CLAIM 5.6. A leaf in L′ is special if and only if it is in one of the following two cases:
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(1) S ∈ C and contains exactly one active vertex v where v ∈ X and ∣δ(v)∣ = 3, or
(2) S = {v} where v ∈X and ∣δ(v)∣ = 3.

PROOF. Consider a special leaf S where S ∈ C or S = {v}. Then δ(S) = ∪u∈S∩Y δ(u)
and δ(u) ∩ δ(w) = ∅ since there is no edge in E′ with both endpoints {u,w} ∈ S. From
Property 3 of a special set, it follows that each v ∈ Y ∩ S must be in X . Since ∣δ(S)∣ = 3
and ∣δ(v)∣ ≥ 3 for each v ∈ X , we have that δ(S) = δ(v) for some v ∈ X ∩ S and ∣δ(v)∣ = 3
as required. Therefore, if S ∈ C, there is exactly one active vertex v ∈ S and v ∈ X and
∣δ(v)∣ = 3. Similarly if S = {v}, then v ∈X and ∣δ(v)∣ = 3.

For the other direction, every leaf which contains exactly one active vertex where
v ∈ X with ∣δ(S)∣ = 3 satisfies the first condition. The second condition is satisfied since
each of the tree edges incident at it are strictly fractional and therefore 0 < x∗(δ(v)) < 3.
Since, v ∈ X , x∗(δ(v)) is an integer and therefore must equal 1 or 2 satisfying the second
condition. The third condition is straightforward since χ(δ(S)) = χ(δ(v)).

The following lemma will complete the proof of Lemma 5.3, and hence Theorem 5.1.
The lemma says that inductively we can assign required number of token to each set
in L′, and at least one extra token to the root. Of course, the required number of tokens
is zero for each leaf S ∈ C and S = {v} where v ∉X . Rest of the sets require at least two
tokens. Moreover, the root will get exactly one extra token only if it is special.

LEMMA 5.7. For any rooted subtree of the forest L′ ≠ ∅with root S, we can distribute
the tokens assigned to vertices inside S such that every vertex in X ∩ S gets at least two
tokens. Moreover, every node in the subtree which is not in C or {v} where v ∉ X gets at
least two tokens. Finally, the root gets at least one extra token and exactly one only if S
is special or S = V .

PROOF. First we prove a claim needed for the lemma.

CLAIM 5.8. If S ≠ V and S ∈ L′ then ∣δ(S)∣ ≥ 2.

PROOF. Since S ≠ V , x∗(δ(S)) ≥ 1 is a valid inequality of the LP. Since S ∈ L′ and
is not strictly contained in the vertex set of a component spanned by F , we have that
F ∩ δ(S) = ∅. Thus x∗e < 1 for each e ∈ δ(S) and ∣δ(S)∣ ≥ 2.

Base Case: Consider a leaf S of tree L′. First consider the case when S = {v}. From
Claim 5.6, if v ∈ X , we have d(v) ≥ 3 and exactly three only if {v} is special. In the
initial assignment v is assigned d(v) tokens. Since v needs to be assigned two tokens,
it has at least one extra token and exactly one extra token only if S = {v} is special.
If v ∉ X , then v receives d(v) ≥ 2 tokens from Claim 5.8. Since it does not need any
tokens, both tokens are extra tokens.

Next, consider the case when S ∈ C. Then again each active vertex in S ∩ Y receives
at least one extra token. If S contains two active vertices, we have the two extra tokens
to assign to S. Recall that S itself does not need any tokens since it has been assigned
two tokens from edges in F . Otherwise, consider the case when S contains exactly one
active vertex, say v. If v ∉ X , then ∣δ(S)∣ = ∣δ(v)∣ ≥ 2 from Claim 5.8 and we have the
two extra tokens. If v ∈ X , then ∣δ(v)∣ = 3 if and only if S is special from Claim 5.6 and
∣δ(v)∣ ≥ 4 otherwise. Since v needs to be assigned two tokens, we can assign one extra
token to S if S is special and two otherwise.

Induction Step: The following two claims are useful in the induction step. Recall
that E∗(S) denotes the set of edges with both endpoints in S. We denote by D(S) the
set of edges with endpoints in different children of S in the forest L′. Observe that if S
is not a leaf in L′, then D(S) ⊆ E′, i.e. all edges in D(S) are strictly fractional.

CLAIM 5.9. If S ∈ L′ has r ≥ 1 children, then x∗(D(S)) = r − 1.
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PROOF. Let the children of S be Ri, 1 ≤ i ≤ r. We have

x∗(E∗(Ri)) = ∣Ri∣ − 1.

Observe that the above equality also holds for children Ri where ∣Ri∣ = 1. In this case
E∗(Ri) = ∅. As S ∈ L, we have

x∗(E∗(S)) = ∣S∣ − 1.
Since S = ⊍iRi, we obtain

x∗(D(S)) = x∗(E∗(S)) −∑
i

x∗(E∗(Ri))

= ∣S∣ − 1 −∑
i

(∣Ri∣ − 1)

= (∣S∣ −∑
i

∣Ri∣) + r − 1 = r − 1,
because ∣S∣ = ∑i ∣Ri∣.

CLAIM 5.10. Suppose a set S ≠ V contains exactly three special children R1,R2,R3

and ∣D(S)∣ ≥ 3. Then S is a special set.

PROOF. Note that

∣δ(S)∣ = ∣δ(R1)∣ + ∣δ(R2)∣ + ∣δ(R3)∣ − 2∣D(S)∣ = 3 + 3 + 3 − 2∣D(S)∣ = 9 − 2∣D(S)∣.
Since S ≠ V , we have ∣δ(S)∣ ≥ 2 by Claim 5.8. As ∣D(S)∣ ≥ 3, the only possibility is that
∣D(S)∣ = 3 and ∣δ(S)∣ = 3, which satisfies the first property of a special set. Also, we have
x∗(δ(S)) = x∗(δ(R1)) + x∗(δ(R2)) + x∗(δ(R3)) − 2x∗(D(S)). As each term on the right
hand side is an integer, it follows that x∗(δ(S)) is an integer. Since δ(S) ∩ F = ∅, we
have x∗(δ(S)) < ∣δ(S)∣ = 3 and thus x∗(δ(S)) is either equal to one or two, and so the
second property of a special set is satisfied. Finally, note that

χ(δ(S)) = χ(δ(R1))+χ(δ(R2))+χ(δ(R3))+χ(E′(R1))+χ(E′(R2))+χ(E′(R3))−2χ(E′(S)).

Here, the vector χ(E′(Ri)) will be the zero vector if Ri is a special vertex. Since
R1,R2,R3 satisfy the third property of a special set, S satisfies the third property of a
special set.

Consider the following cases for the induction step.

(1) S contains at least four children. Each child has at least one excess token. There-
fore, S can collect at least four tokens by taking one excess token from each child.
Since S needs two tokens, the other two tokens are extra.

(2) S has exactly three children. If any child has at least two excess tokens, then S
can collect four tokens, and we are done. Otherwise, each child has only one excess
token, and thus is special by the induction hypothesis. If S = V , then S can collect
three tokens, and this is enough since V is the root of the laminar family. Else, we
have x∗(D(S)) = 2 from Claim 5.9. Since there is no edge e ∈ D(S) with x∗e = 1, we
must have ∣D(S)∣ > x∗(D(S)) = 2. Now, it follows from Claim 5.10 that S is special
and it only requires three tokens.

(3) S contains exactly two children R1,R2. If both R1,R2 have at least two excess to-
kens, then S can collect four tokens, and we are done. Otherwise, one of the chil-
dren has exactly one excess token, say R1. Hence, R1 is special by the induction
hypothesis. We now show a contradiction to the independence of tight constraints
defining x∗, and hence this case would not happen.
Since S contains two children, Claim 5.9 implies that x∗(D(S)) = 1. Since there is
no edge e ∈D(S)with x∗e = 1, we have ∣D(S)∣ = ∣δ(R1,R2)∣ ≥ 2. Also, R1 is special and
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thus ∣δ(R1)∣ = 3. We claim δ(R1,R2) = δ(R1). If not, then let e = δ(R1) ∖ δ(R1,R2).
Then

x∗e = x∗(δ(R1)) − x∗(δ(R1,R2)) = x∗(δ(R1)) − x∗(D(S)).

But x∗(δ(R1)) is an integer as R1 is special and x∗(D(S)) = 1. Therefore, x∗e is an
integer which is a contradiction. Thus δ(R1,R2) = δ(R1). But then

χ(E∗(S)) = χ(E∗(R1)) + χ(δ(R1)) + χ(E∗(R2))
if R2 ∈ L or

χ(E∗(S)) = χ(E∗(R1)) + χ(δ(R1))

if R2 is a singleton vertex. R1 is special implies that χ(δ(R1)) is a linear combina-
tion of the characteristic vectors of its descendants and the characteristic vectors
{χ(δ(v)): v ∈ R1 ∩X}. Hence, in either case χ(E∗(S)) is spanned by χ(E∗(R)) for
R ∈ L∖ {S} and χ(δ(v)) for v ∈ S ∩X which is a contradiction to the linear indepen-
dence of the constraints in L.

This completes the proof of Lemma 5.7 and Theorem 5.1. ◻

◻

6. CONCLUDING REMARKS AND OPEN QUESTIONS

In this paper, we extend the iterative rounding framework to obtain the best possible
guarantee for the MBDST problem. This built on the integrality proofs of the spanning
tree polyhedron for the spanning tree polytope. The iterative rounding framework can
be used to obtain new proofs of integrality of linear programming formulations for
many combinatorial optimization problems including matchings in bipartite and gen-
eral graphs, matroid bases and matroid intersection, submodular flows, etc. While the
proof ideas are similar to other general techniques like total dual integrality, the new
iterative proofs are crucial for problems which can be modeled by introducing extra
side constraints, for example the degree constraints in the minimum bounded degree
spanning tree problem. We refer the reader to [Singh 2008; Lau et al. 2011] for further
applications of the technique.

A closely related problem is the well studied travelling salesperson problem (TSP).
The sub-tour elimination relaxation for TSP is very similar to the LP relaxation for the
MBDST problem. Indeed our techniques can be used to give the following polyhedral
result: Any solution to the sub-tour elimination polytope can be written as a convex
combination of 1-trees each of maximum degree three and average degree two, improv-
ing on a similar result of Goemans Goemans [2006]. Here, an 1-tree is a tree on V ∖ v
along with any two edges incident at vertex v. A natural open question is whether the
techniques used here can be used to obtain better approximation algorithm for TSP.
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