41,839 research outputs found

    Strong Correlations and Magnetic Frustration in the High Tc Iron Pnictides

    Full text link
    We consider the iron pnictides in terms of a proximity to a Mott insulator. The superexchange interactions contain competing nearest-neighbor and next-nearest-neighbor components. In the undoped parent compound, these frustrated interactions lead to a two-sublattice collinear antiferromagnet (each sublattice forming a Neel ordering), with a reduced magnitude for the ordered moment. Electron or hole doping, together with the frustration effect, suppresses the magnetic ordering and allows a superconducting state. The exchange interactions favor a d-wave superconducting order parameter; in the notation appropriate for the Fe square lattice, its orbital symmetry is dxyd_{xy}. A number of existing and future experiments are discussed in light of the theoretical considerations.Comment: (v2) 4+ pages, 4 figures, discussions on several points expanded; references added. To appear in Phys. Rev. Let

    Spin properties of top quark pairs produced at hadron colliders

    Full text link
    We discuss the spin properties of top quark pairs produced at hadron colliders at next-to-leading order in the coupling constant alpha_s of the strong interaction. Specifically we present, for some decay channels, results for differential angular distributions that are sensitive to t tbar spin correlations.Comment: Invited talk given by A. Brandenburg at the Cracow epiphany conference on heavy flavours, 3 - 6 January 2003, Cracow, Polan

    Investigation of Top quark spin correlations at hadron collider

    Full text link
    We report on our results about hadronic ttˉt\bar t production at NLO QCD including t,tˉt, \bar t spin effects, especially on ttˉt\bar t spin correlations.Comment: talk given at the 32nd International Conference on High Energy Physics (ICHEP'04), Beijing, China, 16-22 Aug. 200

    Quantum criticality of the sub-ohmic spin-boson model

    Full text link
    We revisit the critical behavior of the sub-ohmic spin-boson model. Analysis of both the leading and subleading terms in the temperature dependence of the inverse static local spin susceptibility at the quantum critical point, calculated using a numerical renormalization-group method, provides evidence that the quantum critical point is interacting in cases where the quantum-to-classical mapping would predict mean-field behavior. The subleading term is shown to be consistent with an w/T scaling of the local dynamical susceptibility, as is the leading term. The frequency and temperature dependences of the local spin susceptibility in the strong-coupling (delocalized) regime are also presented. We attribute the violation of the quantum-to-classical mapping to a Berry-phase term in a continuum path-integral representation of the model. This effect connects the behavior discussed here with its counterparts in models with continuous spin symmetry.Comment: 9 pages, 10 figure
    • …
    corecore