1,242 research outputs found
Beyond the Waterbed Effect: Development of Fractional Order CRONE Control with Non-Linear Reset
In this paper a novel reset control synthesis method is proposed: CRONE reset
control, combining a robust fractional CRONE controller with non-linear reset
control to overcome waterbed effect. In CRONE control, robustness is achieved
by creation of constant phase behaviour around bandwidth with the use of
fractional operators, also allowing more freedom in shaping the open-loop
frequency response. However, being a linear controller it suffers from the
inevitable trade-off between robustness and performance as a result of the
waterbed effect. Here reset control is introduced in the CRONE design to
overcome the fundamental limitations. In the new controller design, reset phase
advantage is approximated using describing function analysis and used to
achieve better open-loop shape. Sufficient quadratic stability conditions are
shown for the designed CRONE reset controllers and the control design is
validated on a Lorentz-actuated nanometre precision stage. It is shown that for
similar phase margin, better performance in terms of reference-tracking and
noise attenuation can be achieved.Comment: American Control Conference 201
No More Differentiator in PID:Development of Nonlinear Lead for Precision Mechatronics
Industrial PID consists of three elements: Lag (integrator), Lead
(Differentiator) and Low Pass Filters (LPF). PID being a linear control method
is inherently bounded by the waterbed effect due to which there exists a
trade-off between precision \& tracking, provided by Lag and LPF on one side
and stability \& robustness, provided by Lead on the other side. Nonlinear
reset strategies applied in Lag and LPF elements have been very effective in
reducing this trade-off. However, there is lack of study in developing a reset
Lead element. In this paper, we develop a novel lead element which provides
higher precision and stability compared to the linear lead filter and can be
used as a replacement for the same. The concept is presented and validated on a
Lorentz-actuated nanometer precision stage. Improvements in precision, tracking
and bandwidth are shown through two separate designs. Performance is validated
in both time and frequency domain to ensure that phase margin achieved on the
practical setup matches design theories.Comment: European Control Conference 201
Complex order control for improved loop-shaping in precision positioning
This paper presents a complex order filter developed and subsequently
integrated into a PID-based controller design. The nonlinear filter is designed
with reset elements to have describing function based frequency response
similar to that of a linear (practically non-implementable) complex order
filter. This allows for a design which has a negative gain slope and a
corresponding positive phase slope as desired from a loop-shaping
controller-design perspective. This approach enables improvement in precision
tracking without compromising the bandwidth or stability requirements. The
proposed designs are tested on a planar precision positioning stage and
performance compared with PID and other state-of-the-art reset based
controllers to showcase the advantages of this filter
'Constant in gain Lead in phase' element - Application in precision motion control
This work presents a novel 'Constant in gain Lead in phase' (CgLp) element
using nonlinear reset technique. PID is the industrial workhorse even to this
day in high-tech precision positioning applications. However, Bode's gain phase
relationship and waterbed effect fundamentally limit performance of PID and
other linear controllers. This paper presents CgLp as a controlled nonlinear
element which can be introduced within the framework of PID allowing for wide
applicability and overcoming linear control limitations. Design of CgLp with
generalized first order reset element (GFORE) and generalized second order
reset element (GSORE) (introduced in this work) is presented using describing
function analysis. A more detailed analysis of reset elements in frequency
domain compared to existing literature is first carried out for this purpose.
Finally, CgLp is integrated with PID and tested on one of the DOFs of a planar
precision positioning stage. Performance improvement is shown in terms of
tracking, steady-state precision and bandwidth
Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports
Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100 nm and surface roughness of 10 nm. Hall effect measurements showed that the sheet carrier concentration was −1.44 × 1015 cm−2 for AZO and −6 × 1014 cm−2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042 U mg−1) compared to AZO (0.032 U mg−1), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5 μA mM−1 cm−2 towards glucose for GOx/AZO and 2.2 μA mM−1 cm−2 for GOx/ZnO. The limit of detection (LoD) was 167 μM of glucose for GOx/AZO, as compared to 360 μM for GOx/ZnO. The linearity was 0.28–28 mM for GOx/AZO whereas it was 0.6–28 mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics
Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible zeonor plastic substrates
Zeonor plastics are highly versatile due to exceptional optical and mechanical properties which make them the choice material in many novel applications. For potential use in flexible transparent optoelectronic applications, we have investigated Zeonor plastics as flexible substrates for the deposition of highly transparent ZnO and AZO thin films. Films were prepared by pulsed laser deposition at room temperature in oxygen ambient pressures of 75, 150 and 300 mTorr. The growth rate, surface morphology, hydrophobicity and the structural, optical and electrical properties of as grown films with thicknesses∼65–420 nm were recorded for the three oxygen pressures. The growth rates were found to be highly linear both as a function of film thickness and oxygen pressure, indicating high reproducibility. All the films were optically smooth, hydrophobic and nanostructured with lateral grain shapes of∼150 nm wide. This was found compatible with the deposition of condensed nanoclusters, formed in the ablation plume, on a cold and amorphous substrate. Films were nanocrystalline (wurtzite structure), c-axis oriented, with average crystallite size∼22 nm for ZnO and∼16 nm for AZO. In-plane compressive stress values of 2–3 GPa for ZnO films and 0.5 GPa forAZO films were found. Films also displayed high transmission greater than 95% in some cases, in the 400–800 nmwavelength range. The low temperature photoluminescence spectra of all the ZnO and AZO films showed intense near band edge emission. A considerable spread from semi-insulating to n-type conductive was observed for the films, with resistivity∼103 Ω cm and Hall mobility in 4–14 cm2 V−1 s−1 range, showing marked dependences on film thickness and oxygen pressure. Applications in the fields of microfluidic devices and flexible electronics for these ZnO and AZO films are suggested
Heterozygosity for Fibrinogen Results in Efficient Resolution of Kidney Ischemia Reperfusion Injury
Fibrinogen (Fg) has been recognized to play a central role in coagulation, inflammation and tissue regeneration. Several studies have used Fg deficient mice (Fg−/−) in comparison with heterozygous mice (Fg+/−) to point the proinflammatory role of Fg in diverse pathological conditions and disease states. Although Fg+/− mice are considered ‘normal’, plasma Fg is reduced to ∼75% of the normal circulating levels present in wild type mice (Fg+/+). We report that this reduction in Fg protein production in the Fg+/− mice is enough to protect them from kidney ischemia reperfusion injury (IRI) as assessed by tubular injury, kidney dysfunction, necrosis, apoptosis and inflammatory immune cell infiltration. Mechanistically, we observed binding of Fg to ICAM-1 in kidney tissues of Fg+/+ mice at 24 h following IRI as compared to a complete absence of binding observed in the Fg+/− and Fg−/− mice. Raf-1 and ERK were highly activated as evident by significantly higher phosphorylation in the Fg+/+ kidneys at 24 h following IRI as compared to Fg+/− and Fg−/− mice kidneys. On the other hand Cyclin D1 and pRb, indicating higher cell proliferation, were significantly increased in the Fg+/− and Fg−/− as compared to Fg+/+ kidneys. These data suggest that Fg heterozygosity allows maintenance of a critical balance of Fg that enables regression of initial injury and promotes faster resolution of kidney damage
- …
