1,242 research outputs found

    Beyond the Waterbed Effect: Development of Fractional Order CRONE Control with Non-Linear Reset

    Full text link
    In this paper a novel reset control synthesis method is proposed: CRONE reset control, combining a robust fractional CRONE controller with non-linear reset control to overcome waterbed effect. In CRONE control, robustness is achieved by creation of constant phase behaviour around bandwidth with the use of fractional operators, also allowing more freedom in shaping the open-loop frequency response. However, being a linear controller it suffers from the inevitable trade-off between robustness and performance as a result of the waterbed effect. Here reset control is introduced in the CRONE design to overcome the fundamental limitations. In the new controller design, reset phase advantage is approximated using describing function analysis and used to achieve better open-loop shape. Sufficient quadratic stability conditions are shown for the designed CRONE reset controllers and the control design is validated on a Lorentz-actuated nanometre precision stage. It is shown that for similar phase margin, better performance in terms of reference-tracking and noise attenuation can be achieved.Comment: American Control Conference 201

    No More Differentiator in PID:Development of Nonlinear Lead for Precision Mechatronics

    Full text link
    Industrial PID consists of three elements: Lag (integrator), Lead (Differentiator) and Low Pass Filters (LPF). PID being a linear control method is inherently bounded by the waterbed effect due to which there exists a trade-off between precision \& tracking, provided by Lag and LPF on one side and stability \& robustness, provided by Lead on the other side. Nonlinear reset strategies applied in Lag and LPF elements have been very effective in reducing this trade-off. However, there is lack of study in developing a reset Lead element. In this paper, we develop a novel lead element which provides higher precision and stability compared to the linear lead filter and can be used as a replacement for the same. The concept is presented and validated on a Lorentz-actuated nanometer precision stage. Improvements in precision, tracking and bandwidth are shown through two separate designs. Performance is validated in both time and frequency domain to ensure that phase margin achieved on the practical setup matches design theories.Comment: European Control Conference 201

    Complex order control for improved loop-shaping in precision positioning

    Full text link
    This paper presents a complex order filter developed and subsequently integrated into a PID-based controller design. The nonlinear filter is designed with reset elements to have describing function based frequency response similar to that of a linear (practically non-implementable) complex order filter. This allows for a design which has a negative gain slope and a corresponding positive phase slope as desired from a loop-shaping controller-design perspective. This approach enables improvement in precision tracking without compromising the bandwidth or stability requirements. The proposed designs are tested on a planar precision positioning stage and performance compared with PID and other state-of-the-art reset based controllers to showcase the advantages of this filter

    'Constant in gain Lead in phase' element - Application in precision motion control

    Full text link
    This work presents a novel 'Constant in gain Lead in phase' (CgLp) element using nonlinear reset technique. PID is the industrial workhorse even to this day in high-tech precision positioning applications. However, Bode's gain phase relationship and waterbed effect fundamentally limit performance of PID and other linear controllers. This paper presents CgLp as a controlled nonlinear element which can be introduced within the framework of PID allowing for wide applicability and overcoming linear control limitations. Design of CgLp with generalized first order reset element (GFORE) and generalized second order reset element (GSORE) (introduced in this work) is presented using describing function analysis. A more detailed analysis of reset elements in frequency domain compared to existing literature is first carried out for this purpose. Finally, CgLp is integrated with PID and tested on one of the DOFs of a planar precision positioning stage. Performance improvement is shown in terms of tracking, steady-state precision and bandwidth

    Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports

    Get PDF
    Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100 nm and surface roughness of 10 nm. Hall effect measurements showed that the sheet carrier concentration was −1.44 × 1015 cm−2 for AZO and −6 × 1014 cm−2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042 U mg−1) compared to AZO (0.032 U mg−1), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5 μA mM−1 cm−2 towards glucose for GOx/AZO and 2.2 μA mM−1 cm−2 for GOx/ZnO. The limit of detection (LoD) was 167 μM of glucose for GOx/AZO, as compared to 360 μM for GOx/ZnO. The linearity was 0.28–28 mM for GOx/AZO whereas it was 0.6–28 mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics

    Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible zeonor plastic substrates

    Get PDF
    Zeonor plastics are highly versatile due to exceptional optical and mechanical properties which make them the choice material in many novel applications. For potential use in flexible transparent optoelectronic applications, we have investigated Zeonor plastics as flexible substrates for the deposition of highly transparent ZnO and AZO thin films. Films were prepared by pulsed laser deposition at room temperature in oxygen ambient pressures of 75, 150 and 300 mTorr. The growth rate, surface morphology, hydrophobicity and the structural, optical and electrical properties of as grown films with thicknesses∼65–420 nm were recorded for the three oxygen pressures. The growth rates were found to be highly linear both as a function of film thickness and oxygen pressure, indicating high reproducibility. All the films were optically smooth, hydrophobic and nanostructured with lateral grain shapes of∼150 nm wide. This was found compatible with the deposition of condensed nanoclusters, formed in the ablation plume, on a cold and amorphous substrate. Films were nanocrystalline (wurtzite structure), c-axis oriented, with average crystallite size∼22 nm for ZnO and∼16 nm for AZO. In-plane compressive stress values of 2–3 GPa for ZnO films and 0.5 GPa forAZO films were found. Films also displayed high transmission greater than 95% in some cases, in the 400–800 nmwavelength range. The low temperature photoluminescence spectra of all the ZnO and AZO films showed intense near band edge emission. A considerable spread from semi-insulating to n-type conductive was observed for the films, with resistivity∼103 Ω cm and Hall mobility in 4–14 cm2 V−1 s−1 range, showing marked dependences on film thickness and oxygen pressure. Applications in the fields of microfluidic devices and flexible electronics for these ZnO and AZO films are suggested

    Heterozygosity for Fibrinogen Results in Efficient Resolution of Kidney Ischemia Reperfusion Injury

    Get PDF
    Fibrinogen (Fg) has been recognized to play a central role in coagulation, inflammation and tissue regeneration. Several studies have used Fg deficient mice (Fg−/−) in comparison with heterozygous mice (Fg+/−) to point the proinflammatory role of Fg in diverse pathological conditions and disease states. Although Fg+/− mice are considered ‘normal’, plasma Fg is reduced to ∼75% of the normal circulating levels present in wild type mice (Fg+/+). We report that this reduction in Fg protein production in the Fg+/− mice is enough to protect them from kidney ischemia reperfusion injury (IRI) as assessed by tubular injury, kidney dysfunction, necrosis, apoptosis and inflammatory immune cell infiltration. Mechanistically, we observed binding of Fg to ICAM-1 in kidney tissues of Fg+/+ mice at 24 h following IRI as compared to a complete absence of binding observed in the Fg+/− and Fg−/− mice. Raf-1 and ERK were highly activated as evident by significantly higher phosphorylation in the Fg+/+ kidneys at 24 h following IRI as compared to Fg+/− and Fg−/− mice kidneys. On the other hand Cyclin D1 and pRb, indicating higher cell proliferation, were significantly increased in the Fg+/− and Fg−/− as compared to Fg+/+ kidneys. These data suggest that Fg heterozygosity allows maintenance of a critical balance of Fg that enables regression of initial injury and promotes faster resolution of kidney damage
    corecore