10,313 research outputs found

    Comparing key compositional indicators in Jupiter with those in extra-solar giant planets

    Get PDF
    Spectroscopic transiting observations of the atmospheres of hot Jupiters around other stars, first with Hubble Space Telescope and then Spitzer, opened the door to compositional studies of exoplanets. The James Webb Space Telescope will provide such a profound improvement in signal-to-noise ratio that it will enable detailed analysis of molecular abundances, including but not limited to determining abundances of all the major carbon- and oxygen-bearing species in hot Jupiter atmospheres. This will allow determination of the carbon-to-oxygen ratio, an essential number for planet formation models and a motivating goal of the Juno mission currently around JupiterComment: Submitted to the Astro2020 Decadal Survey as a white paper; thematic areas "Planetary Systems" and "Star and Planet Formation

    Autonomous clustering using rough set theory

    Get PDF
    This paper proposes a clustering technique that minimises the need for subjective human intervention and is based on elements of rough set theory. The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency

    Calculation of minor hysteresis loops under metastable to stable transformations in vortex matter

    Get PDF
    We present a model in which metastable supercooled phase and stable equilibrium phase of vortex matter coexist in different regions of a sample. Minor hysteresis loops are calculated with the simple assumption of the two phases of vortex matter having field-independent critical current densities. We use our earlier published ideas that the free energy barrier separating the metastable and stable phases reduces as the magnetic induction moves farther from the first order phase transition line, and that metastable to stable transformations occur in local regions of the sample when the local energy dissipation exceeds a critical value. Previously reported anomalous features in minor hysteresis loops are reproduced, and calculated field profiles are presented.Comment: 9pages, 7 figure

    Radiation hardness of CMS pixel barrel modules

    Get PDF
    Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.Comment: Contribution to the 11th European Symposium on Semiconductor Detectors June 7-11, 2009 Wildbad Kreuth, German

    A semi-analytical approach to perturbations in mutated hilltop inflation

    Full text link
    We study cosmological perturbations and observational aspects for mutated hilltop model of inflation. Employing mostly analytical treatment, we evaluate observable parameters during inflation as well as post-inflationary perturbations. This further leads to exploring observational aspects related to Cosmic Microwave Background (CMB) radiation. This semi-analytical treatment reduces complications related to numerical computation to some extent for studying the different phenomena related to CMB angular power spectrum for mutated hilltop inflation.Comment: 7 pages, 2 figures. Improved version to appear in IJMP

    Identifying the necrotic zone boundary in tumour spheroids with pair-correlation functions

    Get PDF
    Automatic identification of the necrotic zone boundary is important in the assessment of treatments on in vitro tumour spheroids. This has been difficult especially when the difference in cell density between the necrotic and viable zones of a tumour spheroid is small. To help overcome this problem, we developed novel one-dimensional pair-correlation functions (PCFs) to provide quantitative estimates of the radial distance of the necrotic zone boundary from the centre of a tumour spheroid. We validate our approach on synthetic tumour spheroids in which the position of the necrotic zone boundary is known a priori. It is then applied to nine real tumour spheroids imaged with light sheet-based fluorescence microscopy. PCF estimates of the necrotic zone boundary are compared with those of a human expert and an existing standard computational method.S. Dini, B. J. Binder, S. C. Fischer, C. Mattheyer, A. Schmitz, E. H. K. Stelzer, N. G. Bean and J. E. F. Gree

    Universality in D-brane Inflation

    Full text link
    We study the six-field dynamics of D3-brane inflation for a general scalar potential on the conifold, finding simple, universal behavior. We numerically evolve the equations of motion for an ensemble of more than 7 \times 10^7 realizations, drawing the coefficients in the scalar potential from statistical distributions whose detailed properties have demonstrably small effects on our results. When prolonged inflation occurs, it has a characteristic form: the D3-brane initially moves rapidly in the angular directions, spirals down to an inflection point in the potential, and settles into single-field inflation. The probability of N_{e} e-folds of inflation is a power law, P(N_{e}) \propto N_{e}^{-3}, and we derive the same exponent from a simple analytical model. The success of inflation is relatively insensitive to the initial conditions: we find attractor behavior in the angular directions, and the D3-brane can begin far above the inflection point without overshooting. In favorable regions of the parameter space, models yielding 60 e-folds of expansion arise approximately once in 10^3 trials. Realizations that are effectively single-field and give rise to a primordial spectrum of fluctuations consistent with WMAP, for which at least 120 e-folds are required, arise approximately once in 10^5 trials. The emergence of robust predictions from a six-field potential with hundreds of terms invites an analytic approach to multifield inflation.Comment: 28 pages, 9 figure

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    The dynamical viability of scalar-tensor gravity theories

    Full text link
    We establish the dynamical attractor behavior in scalar-tensor theories of dark energy, providing a powerful framework to analyze classes of theories, predicting common evolutionary characteristics that can be compared against cosmological constraints. In the Jordan frame the theories are viewed as a coupling between a scalar field, \Phi, and the Ricci scalar, R, F(\Phi)R. The Jordan frame evolution is described in terms of dynamical variables m \equiv d\ln F/d\ln \Phi and r \equiv -\Phi F/f, where F(\Phi) = d f(\Phi)/d\Phi. The evolution can be alternatively viewed in the Einstein frame as a general coupling between scalar dark energy and matter, \beta. We present a complete, consistent picture of evolution in the Einstein and Jordan frames and consider the conditions on the form of the coupling F and \beta required to give the observed cold dark matter (CDM) dominated era that transitions into a late time accelerative phase, including transitory accelerative eras that have not previously been investigated. We find five classes of evolutionary behavior of which four are qualitatively similar to those for f(R) theories (which have \beta=1/2). The fifth class exists only for |\beta| < \sqrt{3}/4, i.e. not for f(R) theories. In models giving transitory late time acceleration, we find a viable accelerative region of the (r,m) plane accessible to scalar-tensor theories with any coupling, \beta (at least in the range |\beta| \leq 1/2, which we study in detail), and an additional region open only to theories with |\beta| < \sqrt{3}/4.Comment: 24 pages, 3 figure
    • …
    corecore