16,852 research outputs found

    Ground State Entropy of the Potts Antiferromagnet on Cyclic Strip Graphs

    Full text link
    We present exact calculations of the zero-temperature partition function (chromatic polynomial) and the (exponent of the) ground-state entropy S0S_0 for the qq-state Potts antiferromagnet on families of cyclic and twisted cyclic (M\"obius) strip graphs composed of pp-sided polygons. Our results suggest a general rule concerning the maximal region in the complex qq plane to which one can analytically continue from the physical interval where S0>0S_0 > 0. The chromatic zeros and their accumulation set B{\cal B} exhibit the rather unusual property of including support for Re(q)<0Re(q) < 0 and provide further evidence for a relevant conjecture.Comment: 7 pages, Latex, 4 figs., J. Phys. A Lett., in pres

    Ground State Entropy of Potts Antiferromagnets on Cyclic Polygon Chain Graphs

    Full text link
    We present exact calculations of chromatic polynomials for families of cyclic graphs consisting of linked polygons, where the polygons may be adjacent or separated by a given number of bonds. From these we calculate the (exponential of the) ground state entropy, WW, for the q-state Potts model on these graphs in the limit of infinitely many vertices. A number of properties are proved concerning the continuous locus, B{\cal B}, of nonanalyticities in WW. Our results provide further evidence for a general rule concerning the maximal region in the complex q plane to which one can analytically continue from the physical interval where S0>0S_0 > 0.Comment: 27 pages, Latex, 17 figs. J. Phys. A, in pres

    A graph-theory method for pattern identification in geographical epidemiology - a preliminary application to deprivation and mortality

    Get PDF
    Background: Graph theoretical methods are extensively used in the field of computational chemistry to search datasets of compounds to see if they contain particular molecular substructures or patterns. We describe a preliminary application of a graph theoretical method, developed in computational chemistry, to geographical epidemiology in relation to testing a prior hypothesis. We tested the methodology on the hypothesis that if a socioeconomically deprived neighbourhood is situated in a wider deprived area, then that neighbourhood would experience greater adverse effects on mortality compared with a similarly deprived neighbourhood which is situated in a wider area with generally less deprivation. Methods: We used the Trent Region Health Authority area for this study, which contained 10,665 census enumeration districts (CED). Graphs are mathematical representations of objects and their relationships and within the context of this study, nodes represented CEDs and edges were determined by whether or not CEDs were neighbours (shared a common boundary). The overall area in this study was represented by one large graph comprising all CEDs in the region, along with their adjacency information. We used mortality data from 1988-1998, CED level population estimates and the Townsend Material Deprivation Index as an indicator of neighbourhood level deprivation. We defined deprived CEDs as those in the top 20% most deprived in the Region. We then set out to classify these deprived CEDs into seven groups defined by increasing deprivation levels in the neighbouring CEDs. 506 (24.2%) of the deprived CEDs had five adjacent CEDs and we limited pattern development and searching to these CEDs. We developed seven query patterns and used the RASCAL (Rapid Similarity Calculator) program to carry out the search for each of the query patterns. This program used a maximum common subgraph isomorphism method which was modified to handle geographical data. Results: Of the 506 deprived CEDs, 10 were not identified as belonging to any of the seven groups because they were adjacent to a CED with a missing deprivation category quintile, and none fell within query Group 1 (a deprived CED for which all five adjacent CEDs were affluent). Only four CEDs fell within Group 2, which was defined as having four affluent adjacent CEDs and one non-affluent adjacent CED. The numbers of CEDs in Groups 3-7 were 17, 214, 95, 81 and 85 respectively. Age and sex adjusted mortality rate ratios showed a non-significant trend towards increasing mortality risk across Groups (Chi-square = 3.26, df = 1, p = 0.07). Conclusion: Graph theoretical methods developed in computational chemistry may be a useful addition to the current GIS based methods available for geographical epidemiology but further developmental work is required. An important requirement will be the development of methods for specifying multiple complex search patterns. Further work is also required to examine the utility of using distance, as opposed to adjacency, to describe edges in graphs, and to examine methods for pattern specification when the nodes have multiple attributes attached to them

    Tunneling spectroscopy studies of aluminum oxide tunnel barrier layers

    Full text link
    We report scanning tunneling microscopy and ballistic electron emission microscopy studies of the electronic states of the uncovered and chemisorbed-oxygen covered surface of AlOx tunnel barrier layers. These states change when chemisorbed oxygen ions are moved into the oxide by either flood gun electron bombardment or by thermal annealing. The former, if sufficiently energetic, results in locally well defined conduction band onsets at ~1 V, while the latter results in a progressively higher local conduction band onset, exceeding 2.3 V for 500 and 600 C thermal anneals

    The Fractional Quantum Hall effect in an array of quantum wires

    Full text link
    We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire electron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the groundstate of a Hamiltonian that we explicitly construct.Comment: Revtex, 4 pages, 2 figure

    Exact T=0 Partition Functions for Potts Antiferromagnets on Sections of the Simple Cubic Lattice

    Full text link
    We present exact solutions for the zero-temperature partition function of the qq-state Potts antiferromagnet (equivalently, the chromatic polynomial PP) on tube sections of the simple cubic lattice of fixed transverse size Lx×LyL_x \times L_y and arbitrarily great length LzL_z, for sizes Lx×Ly=2×3L_x \times L_y = 2 \times 3 and 2×42 \times 4 and boundary conditions (a) (FBCx,FBCy,FBCz)(FBC_x,FBC_y,FBC_z) and (b) (PBCx,FBCy,FBCz)(PBC_x,FBC_y,FBC_z), where FBCFBC (PBCPBC) denote free (periodic) boundary conditions. In the limit of infinite-length, LzL_z \to \infty, we calculate the resultant ground state degeneracy per site WW (= exponent of the ground-state entropy). Generalizing qq from Z+{\mathbb Z}_+ to C{\mathbb C}, we determine the analytic structure of WW and the related singular locus B{\cal B} which is the continuous accumulation set of zeros of the chromatic polynomial. For the LzL_z \to \infty limit of a given family of lattice sections, WW is analytic for real qq down to a value qcq_c. We determine the values of qcq_c for the lattice sections considered and address the question of the value of qcq_c for a dd-dimensional Cartesian lattice. Analogous results are presented for a tube of arbitrarily great length whose transverse cross section is formed from the complete bipartite graph Km,mK_{m,m}.Comment: 28 pages, latex, six postscript figures, two Mathematica file

    Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0

    Full text link
    Denoting P(G,q)P(G,q) as the chromatic polynomial for coloring an nn-vertex graph GG with qq colors, and considering the limiting function W({G},q)=limnP(G,q)1/nW(\{G\},q) = \lim_{n \to \infty}P(G,q)^{1/n}, a fundamental question in graph theory is the following: is Wr({G},q)=q1W({G},q)W_r(\{G\},q) = q^{-1}W(\{G\},q) analytic or not at the origin of the 1/q1/q plane? (where the complex generalization of qq is assumed). This question is also relevant in statistical mechanics because W({G},q)=exp(S0/kB)W(\{G\},q)=\exp(S_0/k_B), where S0S_0 is the ground state entropy of the qq-state Potts antiferromagnet on the lattice graph {G}\{G\}, and the analyticity of Wr({G},q)W_r(\{G\},q) at 1/q=01/q=0 is necessary for the large-qq series expansions of Wr({G},q)W_r(\{G\},q). Although WrW_r is analytic at 1/q=01/q=0 for many {G}\{G\}, there are some {G}\{G\} for which it is not; for these, WrW_r has no large-qq series expansion. It is important to understand the reason for this nonanalyticity. Here we give a general condition that determines whether or not a particular Wr({G},q)W_r(\{G\},q) is analytic at 1/q=01/q=0 and explains the nonanalyticity where it occurs. We also construct infinite families of graphs with WrW_r functions that are non-analytic at 1/q=01/q=0 and investigate the properties of these functions. Our results are consistent with the conjecture that a sufficient condition for Wr({G},q)W_r(\{G\},q) to be analytic at 1/q=01/q=0 is that {G}\{G\} is a regular lattice graph Λ\Lambda. (This is known not to be a necessary condition).Comment: 22 pages, Revtex, 4 encapsulated postscript figures, to appear in Phys. Rev.

    Spin-Peierls states of quantum antiferromagnets on the CaV4O9Ca V_4 O_9 lattice

    Full text link
    We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on the 1/5-depleted square lattice found in CaV4O9Ca V_4 O_9. The possible phases of the quantum dimer model on this lattice are obtained by a mapping to a quantum-mechanical height model. In addition to the ``decoupled'' phases found earlier, we find a possible intermediate spin-Peierls phase with spontaneously-broken lattice symmetry. Experimental signatures of the different quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure

    Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation

    Full text link
    I show that the hamiltonian theory of Composite Fermions (CF) is capable of yielding a unified description in fair agreement with recent experiments on polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu = p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I show how rotational invariance and two dimensionality can make the underlying interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure

    Vortex lattices in the lowest Landau level for confined Bose-Einstein condensates

    Full text link
    We present the results of numerical calculations of the groundstates of weakly-interacting Bose-Einstein condensates containing large numbers of vortices. Our calculations show that these groundstates appear to be close to uniform triangular vortex lattices. However, slight deviations from a uniform triangular lattice have dramatic consequences on the overall particle distribution. In particular, we demonstrate that the overall particle distribution averaged on a lengthscale large compared to the vortex lattice constant is well approximated by a Thomas-Fermi profile.Comment: 5 pages, 4 figure
    corecore