6,018 research outputs found
Rho Meson Propagation and Dilepton Enhancement in Hot Hadronic Matter
A realistic model for the free rho meson with coupling to two-pion states is
employed to calculate the rho propagator in a hot and dense hadron gas. The
medium modifications are based on hadronic rescattering processes: intermediate
two-pion states are renormalized through interactions with surrounding nucleons
and deltas, and rho meson scattering is considered off nucleons, deltas, pions
and kaons. Constraints from gauge invariance as well as the full off-shell
dynamics of the interactions are accounted for. Within the vector dominance
model we apply the resulting in-medium rho spectral function to compute
production rates from annihilation. The calculation of
corresponding spectra as recently measured in central collisions of
heavy-ions at CERN/SpS energies gives reasonable agreement with the
experimental data.Comment: 27 pages RevTeX, 9 eps-figures, submitted to Nucl. Phys.
Medium Modifications of the Rho Meson at CERN/SPS Energies
Rho meson propagation in hot hadronic matter is studied in a model with
coupling to states. Medium modifications are induced by a change of
the pion dispersion relation through collisions with nucleons and in
the fireball. Maintaining gauge invariance dilepton production is calculated
and compared to the recent data of the CERES collaboration in central S+Au
collisions at 200 GeV/u. The observed enhancement of the rate below the rho
meson mass can be largely accounted for.Comment: 10 pages RevTeX and 2 figures (uuencoded .ps-files
Medium Modifications of Charm and Charmonium in High-Energy Heavy-Ion Collisions
The production of charmonia in heavy-ion collisions is investigated within a
kinetic theory framework simultaneously accounting for dissociation and
regeneration processes in both quark-gluon plasma (QGP) and hadron-gas phases
of the reaction. In-medium modifications of open-charm states (c-quarks,
D-mesons) and the survival of J/psi mesons in the QGP are included as inferred
from lattice QCD. Pertinent consequences on equilibrium charmonium abundances
are evaluated and found to be especially relevant to explain the measured
centrality dependence of the psi'/psi ratio at SPS. Predictions for recent
In-In experiments, as well as comparisons to current Au-Au data from RHIC, are
provided.Comment: 4 Latex pages including 4 eps figures and IOP style files. Talk given
at the 17th International Conference on Ultra-Relativistic Nucleus-Nucleus
Collisions, Quark Matter 2004, Oakland, CA USA, 11-17 Jan 2004. To appear in
J. Phys.
A Schematic Model For Density-Dependent Vector Meson Masses
A schematic two-level model consisting of a "collective" bosonic state and an
"elementary" meson is constructed that provides interpolation from a hadronic
description (a la Rapp/Wambach) to B/R scaling for the description of
properties of vector mesons in dense medium. The development is based on a
close analogy to the degenerate schematic model of Brown for giant resonances
in nuclei.Comment: 20 pages, latex with 8 figures: Talk given by GEB at AIP Klaus
Kinder-Geiger Memorial Meeting, 3 October 199
Medium Dependence of the Vector-Meson Mass: Dynamical and/or Brown-Rho Scaling?
We discuss the similarities and differences for the theories of Rapp, Wambach
and collaborators (called R/W in short) and those based on Brown-Rho scaling
(called B/R), as applied to reproduce the dileptons measured by the CERES
collaboration in the CERN experiments. In both theories the large number of
dileptons at invariant masses ~ are shown to be chiefly
produced by a density-dependent -meson mass. In R/W the medium dependence
is dynamically calculated using hadronic variables defined in the matter-free
vacuum. In B/R scaling it follows from movement towards chiral symmetry
restoration due to medium-induced vacuum change, and is described in terms of
constituent (or quasiparticle) quarks. We argue that the R/W description should
be reliable up to densities somewhat beyond nuclear density, where hadrons are
the effective variables. At higher density there should be a crossover to
constituent quarks as effective variables scaling according to B/R. In the
crossover region, the two descriptions must be ``dual''.Comment: 13 pages LaTeX, incl. 5 eps-figures and appb.sty; Talk given at the
Workshop on 'The Structure of Mesons, Baryons and Nuclei', Cracow, May 1998,
in honor of J. Speth's 60th birthday, to be published in Acta Physica
Polonica
Quarkonia and Heavy-Quark Relaxation Times in the Quark-Gluon Plasma
A thermodynamic T-matrix approach for elastic 2-body interactions is employed
to calculate spectral functions of open and hidden heavy-quark systems in the
Quark-Gluon Plasma. This enables the evaluation of quarkonium bound-state
properties and heavy-quark diffusion on a common basis and thus to obtain
mutual constraints. The two-body interaction kernel is approximated within a
potential picture for spacelike momentum transfers. An effective
field-theoretical model combining color-Coulomb and confining terms is
implemented with relativistic corrections and for different color channels.
Four pertinent model parameters, characterizing the coupling strengths and
screening, are adjusted to reproduce the color-average heavy-quark free energy
as computed in thermal lattice QCD. The approach is tested against vacuum
spectroscopy in the open (D, B) and hidden (Psi and Upsilon) flavor sectors, as
well as in the high-energy limit of elastic perturbative QCD scattering.
Theoretical uncertainties in the static reduction scheme of the 4-dimensional
Bethe-Salpeter equation are elucidated. The quarkonium spectral functions are
used to calculate Euclidean correlators which are discussed in light of lattice
QCD results, while heavy-quark relaxation rates and diffusion coefficients are
extracted utilizing a Fokker-Planck equation.Comment: 33 pages, 28 figure
Field permeability determination of partially saturated fine grained soil
The determination of water permeability through a soil is necessary to estimate seepage losses from small reservoirs. At the present time, the methods available to conduct this determination in partially saturated fine grained soils are expensive and in most cases not commensurate with the cost or importance of the individual structure. This investigation was conducted to evaluate the use of a proposed, potentially inexpensive field procedure in this situation. A modified borehole apparatus was utilized in field tests to determine the permeability of a partially saturated soil deposit in place. Undisturbed samples from the same location were tested in the laboratory by several recommended procedures. It was found that the range of permeability values obtained in the field correlated closely to the range of values obtained by detailed laboratory testing --Abstract, page ii
Theory and Phenomenology of Vector Mesons in Medium
Electromagnetic probes promise to be direct messengers of (spectral
properties of) hot and dense matter formed in heavy-ion collisions, even at
soft momentum transfers essential for characterizing possible phase
transitions. We examine how far we have progressed toward this goal by
highlighting recent developments, and trying to establish connections between
lattice QCD, effective hadronic models and phenomenology of dilepton
production.Comment: 8 pages latex incl. 12 ps/eps files; invited plenary talk at Quark
Matter 2006 conference, Shanghai (China), Nov. 14-20, 200
- âŠ