43 research outputs found

    A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154

    Get PDF
    The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB and the Survey for Transient Astronomical Radio Emission 2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here, we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts ≤1 s) we derive 50% (90%) upper limits of 1048 (1049) erg for GWs at 300 Hz and 1049 (1050) erg at 2 kHz, and constrain the GW-to-radio energy ratio to ≤1014−1016. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs

    Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run

    Get PDF
    Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27 for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9 for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory

    Swift-BAT GUANO follow-up of gravitational-wave triggers in the Third LIGO–Virgo–KAGRA Observing Run

    Get PDF
    We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO–Virgo–KAGRA network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received with low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum-likelihood Non-imaging Transient Reconstruction and Temporal Search pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15–350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10−3 Hz, we compute the GW–BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers

    Tubercular lesions in otorhinolaryngology

    No full text

    Ability of children to perform touchscreen gestures and follow prompting techniques when using mobile apps

    No full text
    Background: Children today get access to smartphones at an early age. However, their ability to use mobile apps has not yet been studied in detail.Purpose: This study aimed to assess the ability of children aged 2–8 years to perform touchscreen gestures and follow prompting techniques, i.e., ways apps provide instructions on how to use them.Methods: We developed one mobile app to test the ability of children to perform various touchscreen gestures and another mobile app to test their ability to follow various prompting techniques. We used these apps in this study of 90 children in a kindergarten and a primary school in New Delhi in July 2019. We noted the touchscreen gestures that the children could perform and the most sophisticated prompting technique that they could follow.Results: Two- and 3-year-old children could not follow any prompting technique and only a minority (27%) could tap the touchscreen at an intended place. Four- to 6-year-old children could perform simple gestures like a tap and slide (57%) and follow instructions provided through animation (63%). Sevenand 8-year-old children could perform more sophisticated gestures like dragging and dropping (30%) and follow instructions provided in audio and video formats (34%). We observed a significant difference between the number of touchscreen gestures that the children could perform and the number of prompting techniques that they could follow (&lt;i&gt;F&lt;/i&gt;=544.0407, &lt;i&gt;P&lt;/i&gt;&lt;0.05). No significant difference was observed in the performance of female versus male children (&lt;i&gt;P&lt;/i&gt;&gt;0.05).Conclusion: Children gradually learn to use mobile apps beginning at 2 years of age. They become comfortable performing single-finger gestures and following nontextual prompting techniques by 8 years of age. We recommend that these results be considered in the development of mobile apps for children.</jats:p

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    No full text

    Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo

    Full text link

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    No full text
    Abstract We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British–German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO–KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network.</jats:p
    corecore