208 research outputs found
Charmless Three-Body Baryonic B Decays
Motivated by recent data on B-> p pbar K decay, we study various charmless
three-body baryonic B decay modes, including Lambda pbar pi, Sigma0 pbar pi, p
pbar pi, p pbar Kbar0, in a factorization approach. These modes have rates of
order 10^{-6}. There are two mechanisms for the baryon pair production,
current-produced and transition. The behavior of decay spectra from these
baryon production mechanisms can be understood by using QCD counting rules.
Predictions on rates and decay spectra can be checked in the near future.Comment: 26 pages, 9 figures; version to appear in Phys. Rev.
K* nucleon hyperon form factors and nucleon strangeness
A crucial input for recent meson hyperon cloud model estimates of the nucleon
matrix element of the strangeness current are the nucleon-hyperon-K* (NYK*)
form factors which regularize some of the arising loops. Prompted by new and
forthcoming information on these form factors from hyperon-nucleon potential
models, we analyze the dependence of the loop model results for the
strange-quark observables on the NYK* form factors and couplings. We find, in
particular, that the now generally favored soft N-Lambda-K* form factors can
reduce the magnitude of the K* contributions in such models by more than an
order of magnitude, compared to previous results with hard form factors. We
also discuss some general implications of our results for hadronic loop models.Comment: 9 pages, 8 figures, new co-author, discussion extended to the
momentum dependence of the strange vector form factor
Wilson Lines off the Light-cone in TMD PDFs
Transverse Momentum Dependent (TMD) parton distribution functions (PDFs) also
take into account the transverse momentum () of the partons. The
-integrated analogues can be linked directly to quark and gluon matrix
elements using the operator product expansion in QCD, involving operators of
definite twist. TMDs also involve operators of higher twist, which are not
suppressed by powers of the hard scale, however. Taking into account gauge
links that no longer are along the light-cone, one finds that new distribution
functions arise. They appear at leading order in the description of azimuthal
asymmetries in high-energy scattering processes. In analogy to the collinear
operator expansion, we define a universal set of TMDs of definite rank and
point out the importance for phenomenology.Comment: 12 pages, presented by the first author at the Light-Cone Conference
2013, May 20-24, 2013, Skiathos, Greece. To be published in Few Body System
The Off-diagonal Goldberger-Treiman Relation and Its Discrepancy
We study the off-diagonal Goldberger-Treiman relation (ODGTR) and its
discrepancy (ODGTD) in the N, Delta, pi sector through O(p^2) using heavy
baryon chiral perturbation theory. To this order, the ODGTD and axial vector N
to Delta transition radius are determined solely by low energy constants. Loop
corrections appear at O(p^4). For low-energy constants of natural size, the
ODGTD would represent a ~ 2% correction to the ODGTR. We discuss the
implications of the ODGTR and ODGTD for lattice and quark model calculations of
the transition form factors and for parity-violating electroexcitation of the
Delta.Comment: 11 pages, 1 eps figur
Singularity free dilaton-driven cosmologies and pre-little-bang
There are no reasons why the singularity in the growth of the dilaton
coupling should not be regularised, in a string cosmological context, by the
presence of classical inhomogeneities. We discuss a class of inhomogeneous
dilaton-driven models whose curvature invariants are all bounded and regular in
time and space. We prove that the non-space-like geodesics of these models are
all complete in the sense that none of them reaches infinity for a finite value
of the affine parameter. We conclude that our examples represent truly
singularity-free solutions of the low energy beta functions. We discuss some
symmetries of the obtained solutions and we clarify their physical
interpretation. We also give examples of solutions with spherical symmetry. In
our scenario each physical quantity is everywhere defined in time and space,
the big-bang singularity is replaced by a maximal curvature phase where the
dilaton kinetic energy reaches its maximum. The maximal curvature is always
smaller than one (in string units) and the coupling constant is also smaller
than one and it grows between two regimes of constant dilaton, implying,
together with the symmetries of the solutions, that higher genus and higher
curvature corrections are negligible. We argue that our examples describe, in a
string cosmological context, the occurrence of ``little bangs''(i.e. high
curvature phases which never develop physical singularities). They also suggest
the possibility of an unexplored ``pre-little-bang'' phase.Comment: 25 pages in LaTex style, 3 encapsulated figure
Long distance regularization in chiral perturbation theory with decuplet
We investigate the use of long distance regularization in SU(3) baryon chiral
perturbation theory with decuplet fields. The one-loop decuplet contributions
to the octet baryon masses, axial couplings, S-wave nonleptonic hyperon decays
and magnetic moments are evaluated in a chirally consistent fashion by
employing a cutoff to implement long distance regularization. The convergence
of the chiral expansions of these quantities is improved compared to the
dimensionally regularized version which indicates that the propagation of
Goldstone bosons over distances smaller than a typical hadronic size, which is
beyond the regime of chiral perturbation theory but included by dimensional
regularization, is removed by use of a cutoff.Comment: 31 page
Transverse-Momentum Distributions and Spherical Symmetry
Transverse-momentum dependent parton distributions (TMDs) are studied in the
framework of quark models. In particular, quark model relations among TMDs are
reviewed and their physical origin is discussed in terms of rotational-symmetry
properties of the nucleon state in its rest frame.Comment: 8 pages, 2 figures, prepared for the workshop "30 years of strong
interactions", Spa, Belgium, 6-8 April 201
Weighted azimuthal asymmetries in a diquark spectator model
We analytically calculate weighted azimuthal asymmetries in semi-inclusive
lepton-nucleon deep-inelastic scattering and Drell-Yan processes, using
transverse-momentum-dependent partonic densities obtained in a diquark
spectator model. We compare the asymmetries with available preliminary
experimental data, in particular for the Collins and the Sivers effect. We make
predictions for other cases of interest in running and planned experiments.Comment: 21 pages, 13 (multiple) figures in eps format, RevTeX
Dilepton Spectra from Decays of Light Unflavored Mesons
The invariant mass spectrum of the and pairs
from decays of light unflavored mesons with masses below the -meson mass to final states containing along with a dilepton pair one
photon, one meson, and two mesons are calculated within the framework of the
effective meson theory. The results can be used for simulations of the dilepton
spectra in heavy-ion collisions and for experimental searches of dilepton meson
decays.Comment: 73 pages, 19 figures, 3 tables, REVTeX, new references adde
Generalized Parton Distributions from Hadronic Observables: Non-Zero Skewness
We propose a physically motivated parametrization for the unpolarized
generalized parton distributions, H and E, valid at both zero and non-zero
values of the skewness variable, \zeta. Our approach follows a previous
detailed study of the \zeta=0 case where H and E were determined using
constraints from simultaneous fits of the experimental data on both the nucleon
elastic form factors and the deep inelastic structure functions in the non
singlet sector. Additional constraints at \zeta \neq 0 are provided by lattice
calculations of the higher moments of generalized parton distributions. We
illustrate a method for extracting generalized parton distributions from
lattice moments based on a reconstruction using sets of orthogonal polynomials.
The inclusion in our fit of data on Deeply Virtual Compton Scattering is also
discussed. Our method provides a step towards a model independent extraction of
generalized distributions from the data. It also provides an alternative to
double distributions based phenomenological models in that we are able to
satisfy the polynomiality condition by construction, using a combination of
experimental data and lattice, without resorting to any specific mathematical
construct.Comment: 29 pages, 8 figures; added references, changed text in several place
- …