208 research outputs found

    Charmless Three-Body Baryonic B Decays

    Full text link
    Motivated by recent data on B-> p pbar K decay, we study various charmless three-body baryonic B decay modes, including Lambda pbar pi, Sigma0 pbar pi, p pbar pi, p pbar Kbar0, in a factorization approach. These modes have rates of order 10^{-6}. There are two mechanisms for the baryon pair production, current-produced and transition. The behavior of decay spectra from these baryon production mechanisms can be understood by using QCD counting rules. Predictions on rates and decay spectra can be checked in the near future.Comment: 26 pages, 9 figures; version to appear in Phys. Rev.

    K* nucleon hyperon form factors and nucleon strangeness

    Full text link
    A crucial input for recent meson hyperon cloud model estimates of the nucleon matrix element of the strangeness current are the nucleon-hyperon-K* (NYK*) form factors which regularize some of the arising loops. Prompted by new and forthcoming information on these form factors from hyperon-nucleon potential models, we analyze the dependence of the loop model results for the strange-quark observables on the NYK* form factors and couplings. We find, in particular, that the now generally favored soft N-Lambda-K* form factors can reduce the magnitude of the K* contributions in such models by more than an order of magnitude, compared to previous results with hard form factors. We also discuss some general implications of our results for hadronic loop models.Comment: 9 pages, 8 figures, new co-author, discussion extended to the momentum dependence of the strange vector form factor

    Wilson Lines off the Light-cone in TMD PDFs

    Full text link
    Transverse Momentum Dependent (TMD) parton distribution functions (PDFs) also take into account the transverse momentum (pTp_T) of the partons. The pTp_T-integrated analogues can be linked directly to quark and gluon matrix elements using the operator product expansion in QCD, involving operators of definite twist. TMDs also involve operators of higher twist, which are not suppressed by powers of the hard scale, however. Taking into account gauge links that no longer are along the light-cone, one finds that new distribution functions arise. They appear at leading order in the description of azimuthal asymmetries in high-energy scattering processes. In analogy to the collinear operator expansion, we define a universal set of TMDs of definite rank and point out the importance for phenomenology.Comment: 12 pages, presented by the first author at the Light-Cone Conference 2013, May 20-24, 2013, Skiathos, Greece. To be published in Few Body System

    The Off-diagonal Goldberger-Treiman Relation and Its Discrepancy

    Get PDF
    We study the off-diagonal Goldberger-Treiman relation (ODGTR) and its discrepancy (ODGTD) in the N, Delta, pi sector through O(p^2) using heavy baryon chiral perturbation theory. To this order, the ODGTD and axial vector N to Delta transition radius are determined solely by low energy constants. Loop corrections appear at O(p^4). For low-energy constants of natural size, the ODGTD would represent a ~ 2% correction to the ODGTR. We discuss the implications of the ODGTR and ODGTD for lattice and quark model calculations of the transition form factors and for parity-violating electroexcitation of the Delta.Comment: 11 pages, 1 eps figur

    Singularity free dilaton-driven cosmologies and pre-little-bang

    Get PDF
    There are no reasons why the singularity in the growth of the dilaton coupling should not be regularised, in a string cosmological context, by the presence of classical inhomogeneities. We discuss a class of inhomogeneous dilaton-driven models whose curvature invariants are all bounded and regular in time and space. We prove that the non-space-like geodesics of these models are all complete in the sense that none of them reaches infinity for a finite value of the affine parameter. We conclude that our examples represent truly singularity-free solutions of the low energy beta functions. We discuss some symmetries of the obtained solutions and we clarify their physical interpretation. We also give examples of solutions with spherical symmetry. In our scenario each physical quantity is everywhere defined in time and space, the big-bang singularity is replaced by a maximal curvature phase where the dilaton kinetic energy reaches its maximum. The maximal curvature is always smaller than one (in string units) and the coupling constant is also smaller than one and it grows between two regimes of constant dilaton, implying, together with the symmetries of the solutions, that higher genus and higher curvature corrections are negligible. We argue that our examples describe, in a string cosmological context, the occurrence of ``little bangs''(i.e. high curvature phases which never develop physical singularities). They also suggest the possibility of an unexplored ``pre-little-bang'' phase.Comment: 25 pages in LaTex style, 3 encapsulated figure

    Long distance regularization in chiral perturbation theory with decuplet

    Get PDF
    We investigate the use of long distance regularization in SU(3) baryon chiral perturbation theory with decuplet fields. The one-loop decuplet contributions to the octet baryon masses, axial couplings, S-wave nonleptonic hyperon decays and magnetic moments are evaluated in a chirally consistent fashion by employing a cutoff to implement long distance regularization. The convergence of the chiral expansions of these quantities is improved compared to the dimensionally regularized version which indicates that the propagation of Goldstone bosons over distances smaller than a typical hadronic size, which is beyond the regime of chiral perturbation theory but included by dimensional regularization, is removed by use of a cutoff.Comment: 31 page

    Transverse-Momentum Distributions and Spherical Symmetry

    Get PDF
    Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. In particular, quark model relations among TMDs are reviewed and their physical origin is discussed in terms of rotational-symmetry properties of the nucleon state in its rest frame.Comment: 8 pages, 2 figures, prepared for the workshop "30 years of strong interactions", Spa, Belgium, 6-8 April 201

    Weighted azimuthal asymmetries in a diquark spectator model

    Full text link
    We analytically calculate weighted azimuthal asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering and Drell-Yan processes, using transverse-momentum-dependent partonic densities obtained in a diquark spectator model. We compare the asymmetries with available preliminary experimental data, in particular for the Collins and the Sivers effect. We make predictions for other cases of interest in running and planned experiments.Comment: 21 pages, 13 (multiple) figures in eps format, RevTeX

    Dilepton Spectra from Decays of Light Unflavored Mesons

    Get PDF
    The invariant mass spectrum of the e+ee^{+}e^{-} and μ+μ\mu ^{+}\mu ^{-} pairs from decays of light unflavored mesons with masses below the ϕ(1020)\phi (1020)-meson mass to final states containing along with a dilepton pair one photon, one meson, and two mesons are calculated within the framework of the effective meson theory. The results can be used for simulations of the dilepton spectra in heavy-ion collisions and for experimental searches of dilepton meson decays.Comment: 73 pages, 19 figures, 3 tables, REVTeX, new references adde

    Generalized Parton Distributions from Hadronic Observables: Non-Zero Skewness

    Full text link
    We propose a physically motivated parametrization for the unpolarized generalized parton distributions, H and E, valid at both zero and non-zero values of the skewness variable, \zeta. Our approach follows a previous detailed study of the \zeta=0 case where H and E were determined using constraints from simultaneous fits of the experimental data on both the nucleon elastic form factors and the deep inelastic structure functions in the non singlet sector. Additional constraints at \zeta \neq 0 are provided by lattice calculations of the higher moments of generalized parton distributions. We illustrate a method for extracting generalized parton distributions from lattice moments based on a reconstruction using sets of orthogonal polynomials. The inclusion in our fit of data on Deeply Virtual Compton Scattering is also discussed. Our method provides a step towards a model independent extraction of generalized distributions from the data. It also provides an alternative to double distributions based phenomenological models in that we are able to satisfy the polynomiality condition by construction, using a combination of experimental data and lattice, without resorting to any specific mathematical construct.Comment: 29 pages, 8 figures; added references, changed text in several place
    corecore