161,903 research outputs found

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    DsJD_{sJ}(2317) meson production at RHIC

    Full text link
    Production of DsJD_{sJ}(2317) mesons in relativistic heavy ion collisions at RHIC is studied. Using the quark coalescence model, we first determine the initial number of DsJD_{sJ}(2317) mesons produced during hadronization of created quark-gluon plasma. The predicted DsJD_{sJ}(2317) abundance depends sensitively on the quark structure of the DsJD_{sJ}(2317) meson. An order-of-magnitude larger yield is obtained for a conventional two-quark than for an exotic four-quark DsJD_{sJ}(2317) meson. To include the hadronic effect on the DsJD_{sJ}(2317) meson yield, we have evaluated the absorption cross sections of the DsJD_{sJ}(2317) meson by pion, rho, anti-kaon, and vector anti-kaon in a phenomenological hadronic model. Taking into consideration the absorption and production of DsJD_{sJ}(2317) mesons during the hadronic stage of heavy ion collisions via a kinetic model, we find that the final yield of DsJD_{sJ}(2317) mesons remains sensitive to its initial number produced from the quark-gluon plasma, providing thus the possibility of studying the quark structure of the DsJD_{sJ}(2317) meson and its production mechanism in relativistic heavy ion collisions.Comment: 12 pages, 6 figure

    Separable states and the geometric phases of an interacting two-spin system

    Full text link
    It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then always equal to the sum of the geometric phases of its subsystems. In this paper, we illustrate this point by investigating a well known physical model. We give a necessary and sufficient condition in which a separable state remains separable so that the geometric phase of the system is always equal to the sum of the geometric phases of its subsystems.Comment: 13 page

    Quantum Statistical Entropy and Minimal Length of 5D Ricci-flat Black String with Generalized Uncertainty Principle

    Full text link
    In this paper, we study the quantum statistical entropy in a 5D Ricci-flat black string solution, which contains a 4D Schwarzschild-de Sitter black hole on the brane, by using the improved thin-layer method with the generalized uncertainty principle. The entropy is the linear sum of the areas of the event horizon and the cosmological horizon without any cut-off and any constraint on the bulk's configuration rather than the usual uncertainty principle. The system's density of state and free energy are convergent in the neighborhood of horizon. The small-mass approximation is determined by the asymptotic behavior of metric function near horizons. Meanwhile, we obtain the minimal length of the position Δx\Delta x which is restrained by the surface gravities and the thickness of layer near horizons.Comment: 11pages and this work is dedicated to the memory of Professor Hongya Li
    corecore