20,067 research outputs found
Noise removal in multichannel images
A adaptive filtering method, the Windrow-Hoff algorithm, for enhancing multichannel signals against aditive noise was investigated. It removes noise for multichannel images containing correlated signal compoments but uncorrelated noise components. Its potential application is the enhancement of multichannel microwave satellite images as a preprocessing step for the extraction of geophysical parameters
Small scale wind tunnel model investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap
A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects
A simple mean field equation for condensates in the BEC-BCS crossover regime
We present a mean field approach based on pairs of fermionic atoms to
describe condensates in the BEC-BCS crossover regime. By introducing an
effective potential, the mean field equation allows us to calculate the
chemical potential, the equation of states and the atomic correlation function.
The results agree surprisingly well with recent quantum Monte Carlo
calculations. We show that the smooth crossover from the bosonic mean field
repulsion between molecules to the Fermi pressure among atoms is associated
with the evolution of the atomic correlation function
Ultracold molecules: vehicles to scalable quantum information processing
We describe a novel scheme to implement scalable quantum information
processing using Li-Cs molecular state to entangle Li and Cs
ultracold atoms held in independent optical lattices. The Li atoms will
act as quantum bits to store information, and Cs atoms will serve as
messenger bits that aid in quantum gate operations and mediate entanglement
between distant qubit atoms. Each atomic species is held in a separate optical
lattice and the atoms can be overlapped by translating the lattices with
respect to each other. When the messenger and qubit atoms are overlapped,
targeted single spin operations and entangling operations can be performed by
coupling the atomic states to a molecular state with radio-frequency pulses. By
controlling the frequency and duration of the radio-frequency pulses,
entanglement can either be created or swapped between a qubit messenger pair.
We estimate operation fidelities for entangling two distant qubits and discuss
scalability of this scheme and constraints on the optical lattice lasers
Restoration of multichannel microwave radiometric images
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation
- …