84 research outputs found

    Noise simulation system for determining imaging conditions in digital radiography

    Get PDF
    Reduction of exposure dose and improvement in image quality can be expected to result from advances in the performance of imaging detectors. We propose a computerized method for determining optimized imaging conditions by use of simulated images. This study was performed to develop a prototype system for image noise and to ensure consistency between the resulting images and actual images. An RQA5 X-ray spectrum was used for determination of input-output characteristics of a flat-panel detector (FPD). The number of incident quantum to the detector per pixel (counts/pixel) was calculated according to the pixel size of the detector and the quantum number in RQA5 determined in IEC6220-1. The relationship among tube current-time product (mAs), exposure dose (C/kg) at the detector surface, the number of incident quanta (counts/pixel), and pixel values measured on the images was addressed, and a conversion function was then created. The images obtained by the FPD was converted into a map of incident quantum numbers and input into random-value generator to simulate image noise. In addition, graphic user interface was developed to observe images with changing image noise and exposure dose levels, which have trade-off relationship. Simulation images provided at different noise levels were compared with actual images obtained by the FPD system. The results indicated that image noise was simulated properly both in objective and subjective evaluation. The present system could allow us to determine necessary dose from image quality and also to estimate image quality from any exposure dose. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE)

    Relentless Placoid Chorioretinitis: A Case Series of Successful Tapering of Systemic Immunosuppressants Achieved with Adalimumab

    Get PDF
    Background: Adalimumab, a human anti-tumor necrosis factor-ɑ monoclonal antibody, was recently reported to be effective in lowering the risk of recurrence of noninfectious uveitis. This is the first case series of adalimumab administrations for relentless placoid chorioretinitis (RPC) patients. Case Presentation: We report 2 cases of RPC where successful treatments were achieved with adalimumab. A 34-year-old woman developed conjunctival hyperemia, mild iridocyclitis, and multiple atrophic retinal lesions, along with exudative changes that were widespread from the posterior pole to peripheral retina in both eyes. The diagnosis of RPC was made based on the characteristic recurrences of choroiditis despite systemic corticosteroid and cyclosporine. Adalimumab therapy was introduced to the patient, and thereafter no recurrence was observed while tapering the immunosuppressive agents. The second case was a 22-year-old man with visual deterioration in both eyes who exhibited widespread multiple chorioretinal atrophic lesions. We diagnosed the case as RPC based on characteristic clinical findings and recurring chorioretinitis during tapering of systemic corticosteroids. Adalimumab therapy was administrated, and immunosuppressant dosage was successfully reduced without any recurrences. Conclusions: In the current two RPC cases, adalimumab was quite effective and useful to reduce the dosages of systemic immunosuppressants. Further study is necessary to confirm the effectiveness of adalimumab in RPC patients

    Review of a simple noise simulation technique in digital radiography

    Get PDF
    Reduction of exposure dose and improvement in image quality can be expected to result from advances in the performance of imaging detectors. A number of researchers have reported on methods for simulating reduced dose images. The simplest method provides reduced dose images by adding white Gaussian noise with a certain standard deviation to the original image. Our aim in this study was to develop and validate a system with a graphic user interface for simulating reduced dose images by a simple method. Here, we describe a technical approach with the use of a flat-panel detector system, and we validated the simulation performance in reducing the dose objectively and subjectively. In addition, the technical limitations and possible solutions to the simple method are suggested based on the validation results presented in this paper. © 2012 Japanese Society of Radiological Technology and Japan Society of Medical Physics.発行後1年より全文公開

    Ultrastructural and Immunohistochemical Studies on Uptake and Distribution of FITC-Conjugated PLGA Nanoparticles Administered Intratracheally in Rats

    Get PDF
    Polylactide-glycolide (PLGA) nanoparticles have been developed as pulmonary drug delivery carriers. To investigate their behavior, small- (d50 = 74 nm) and large-sized (d50 = 250 nm) FITC-conjugated PLGA nanoparticles were intratracheally administered to rats and were traced for 5, 30 and 60 minutes and 24 hours after administration (HAT). Immunohistochemically, a, FITC-positive reaction was observed in type-I alveolar epithelial cells (type-I AEC), endothelial cells and alveolar macrophages in the lungs from 5 minutes after treatment (MAT) to 24 HAT in both nanoparticle groups. In the kidneys, a positive reaction was observed in proximal tubular epithelial cells at 30 MAT; the reaction peaked at 60 MAT and was reduced at 24 HAT, while no positive reaction was seen in other sites. Ultrascructurally, the number of membrane-bound vesicles, which were approximately 70 nm in size and hard to distinguish from pinocytic vesicles, apparently increased in type-I AEC and endothelial cells at 5 MAT in the small-sized group, in comparison with the control group receiving physiological saline. The number of vesicles in the large-sized group was almost same as that in the control group. On the other hand, in both nanoparticle groups, lysosomes filled with nanoparticles appeared in alveolar macrophages from 30 MAT to 24 HAT. These results indicate that PLGA nanoparticles might be quickly transferred from the alveolar space to the blood vessel via type-I alveolar epithelial cells and excreted into urine, and that there is a threshold for particle size, less than approximately 70 nm in diameter, with regard to absorption through the alveolar wall

    Simulation system for understanding the lag effect in fluoroscopic images

    Get PDF
    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). It is crucial to understand the effects of image lag for real-time tumor tracking. Our purpose in this study was to develop a lag simulation system based on the image lag properties of an FPD system. Image lag properties were measured on flat-field images both in direct- and indirect-conversion dynamic FPDs. A moving target with image lag was simulated based on the lag properties in all combinations of FPD types, imaging rates, exposure doses, and target speeds, and then compared with actual moving targets for investigation of the reproducibility of image lag. Image lag was simulated successfully and agreed well with the actual lag as well as with the predicted effect. In the indirect-conversion FPD, a higher dose caused greater image lag on images. In contrast, there were no significant differences among dose levels in a direct-conversion FPD. There were no relationships between target speed and amount of image blurring in either type of FPD. The maximum contour blurring and the rate of increase in pixel value due to image lag were 1.1 mm and 10.0 %, respectively, in all combinations of imaging parameters examined in this study. Blurred boundaries and changes in pixel value due to image lag were estimated under various imaging conditions with use of the simulation system. Our system would be helpful for a better understanding of the effects of image lag in fluoroscopic images. © 2012 Japanese Society of Radiological Technology and Japan Society of Medical Physics

    Effects of image lag on real-time target tracking in radiotherapy

    Get PDF
    There is a concern that image lag may reduce accuracy of real-time target tracking in radiotherapy. This study was performed to investigate influence of image lag on the accuracy of target tracking in radiotherapy. Fluoroscopic image: were obtained using a direct type of dynamic flat-panel detector (FPD) system under conditions of target tracking during radiotherapy. The images continued to be read out after X-irradiations and cutoff, and image lag properties in the system were then determined. Subsequently, a tungsten materials plate with a precision edge was mounted on to a motor control device, which provided a constant velocity. The plate was moved into the center of the detector at movement rate of 1 and 20 mm/s, covering lung tumor movement of normal breathing, and MTF and profile curves were measured on the edges covering and uncovering the detector. A lung tumor with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the target could be traced within a margin for error ii external radiotherapy. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation. Further studies are required to investigate influence by the other factors, such a: exposure dose, target size and shape, imaging rate, and thickness of a patient\u27s body. © 2010 SPIE

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore