165 research outputs found

    A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers

    Get PDF
    This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds particular promise for the study of dynamic combusting flows. A proof-of-concept numerical demonstration is presented, using representative phantoms to model conditions typically prevailing in near-atmospheric or high pressure flames. The simulations reveal both the feasibility of the proposed technique and its robustness. Our calculations indicate precisions of ∼70 K at flame temperatures and ∼0.05 bars at high pressure from reconstructions featuring as much as 5% Gaussian noise in the projections.This work was supported by the Seventh Framework Program (Grant Agreement No. PIIF-GA-2012-330840) of the European Union and was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service.Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article appeared in Applied Physics Letters 104, 034101 (2014) and may be found at (http://scitation.aip.org/content/aip/journal/apl/104/3/10.1063/1.4862754)

    A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry

    Get PDF
    Multispectral absorption tomography (MAT) is now a well-established technique that can be applied for the simultaneous imaging of temperature, species concentration, and pressure of reactive flows. However, only intermediate spatial resolution, on order of 15×15 grid points, has so far been achievable in previous demonstrations. The aim of the present work is to provide a numerical validation of our MAT algorithm for thermometry of combusting flows, but with greatly improved spatial resolution to motivate its experimental realization in practical environments. We demonstrate a grid resolution that is comparable to that of classical absorption tomography (CAT) containing 80×80 elements from only two orthogonal projections, which is impractical to realize with CAT but especially desirable for applications where optical access is limited. This is achieved using the smoothness assumption, which holds true under most combustion conditions. The study shows that better spatial resolution can be obtained through a simple increase in the spatial sampling frequency for the two available projections, as the smoothness condition becomes more reliable on smaller spatial scales. Our work also demonstrates the first application of MAT for full volumetric reconstructions. The studies thus provide robust guidelines for the implementation of MAT over large spatial scales and lay solid foundations for its development and application in complex technical combustion scenarios, where spatial resolution is crucial to investigate the interaction of flow phenomena with chemical reactions.This work was funded by the European Commission under Grant No. ASHTCSC 330840 and was partly performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service. Clemens F. Kaminski also wishes to acknowledge EPSRC for funding (grant EP/L015889/1).This is the final published version of a paper published in Applied Physics B, February 2015, DOI 10.1007/s00340-015-6012-

    Super-resolution imaging of alpha-synuclein polymorphisms and their potential role in neurodegeneration

    Get PDF
    The conversion of soluble, functional proteins into amyloid fibrils has been linked to the development of neurodegenerative disorders, including Parkinson's and Alzheimer's disease. In the brains of patients with these disorders, the increasing presence of amyloid-containing plaques corresponds to neuronal cell death and the worsening of symptoms. However, protein amyloids are not merely confined to dying cells. Rather, some show a propensity to be transmitted to, and enter adjacent cells and induce the polymerization of the native monomer population. Whether this process is directly associated with toxicity or not is still highly debated. In this mini review, we will discuss structural polymorphisms of α-synuclein, as determined by super-resolution imaging techniques, and how these may be related to neuronal toxicity.This work was funded by grants from the UK Medical Research Council (MR/K015850/1 and MR/K02292X/1), Alzheimer’s Research UK (ARUK-EG2012A-1), the UK Engineering and Physical Sciences Research Council (EP/H018301/1), and the Wellcome Trust (089703/ Z/09/Z)

    Speed limits of structured illumination microscopy

    Get PDF
    A theoretical framework for widefield structured illumination microscopy (SIM) reconstruction from fewer than the commonly used nine raw frame acquisitions is introduced and applied in silico and in vitro. The proposed scheme avoids the recording of redundant spatial frequency components, which was necessary in previous SIM algorithms. This allows for gentler superresolution imaging at faster speeds. A doubling of frame rates is possible solely via changes in the computational reconstruction procedure. Furthermore, we explore numerically the effect of the sample movement on the reconstruction quality and the number of raw frames recordable. Our results show that there exists a limit above which deconvolution microscopy becomes superior to SIM.Engineering and Physical Sciences Research Council (EPSRC) (EP/H018301/1); Medical Research Council (MRC) (MR/K015850/1, MR/K02292X/1); Wellcome Trust (089703/Z/09/Z)

    Investigating State Restriction in Fluorescent Protein FRET Using Time-Resolved Fluorescence and Anisotropy

    Get PDF
    Most fluorescent proteins exhibit multiexponential fluorescence decays, indicating a heterogeneous excited state population. FRET between fluorescent proteins should therefore involve multiple energy transfer pathways. We recently demonstrated the FRET pathways between EGFP and mCherry (mC), upon the dimerization of 3-phosphoinositide dependent protein kinase 1 (PDK1), to be highly restricted. A mechanism for FRET restriction based on a highly unfavorable κ(2) orientation factor arising from differences in donor-acceptor transition dipole moment angles in a far from coplanar and near static interaction geometry was proposed. Here this is tested via FRET to mC arising from the association of glutathione (GSH) and glutathione S-transferase (GST) with an intrinsically homogeneous and more mobile donor Oregon Green 488 (OG). A new analysis of the acceptor window intensity, based on the turnover point of the sensitized fluorescence, is combined with donor window intensity and anisotropy measurements which show that unrestricted FRET to mC takes place. However, a long-lived anisotropy decay component in the donor window reveals a GST-GSH population in which FRET does not occur, explaining previous discrepancies between quantitative FRET measurements of GST-GSH association and their accepted values. This reinforces the importance of the local donor-acceptor environment in mediating energy transfer and the need to perform spectrally resolved intensity and anisotropy decay measurements in the accurate quantification of fluorescent protein FRET

    Heparin acts as a structural component of β-endorphin amyloid fibrils rather than a simple aggregation promoter.

    Get PDF
    The aggregation promoter heparin is commonly used to study the aggregation kinetics and biophysical properties of protein amyloids. However, the underlying mechanism for amyloid promotion by heparin remains poorly understood. In the case of the neuropeptide β-endorphin that can reversibly adopt a functional amyloid form in nature, aggregation in the presence of heparin leads to a loss of function. Applying correlative optical super-resolution microscopy methods, we show that heparin incorporates into emerging β-endorphin fibrils forming an integral component and is essential for amyloid templating. This will have direct implications on β-endorphin's normal physiological function and raises concerns on the biological relevance of heparin-promoted amyloid models.This work was funded by grants from the Wellcome Trust, the Medical Research Council UK, the Alzheimer Research UK Trust, the Engineering and Physical Sciences Research Council UK, and the Biotechnology and Biological Sciences Research Council. NN was supported through Early PostDoc.Mobility personal fellowship from Swiss National Science Foundation
    • …
    corecore