5 research outputs found

    Study partner‐reported decline identifies cognitive decline and dementia risk

    No full text
    OBJECTIVE:Identifying individuals at risk for cognitive decline, Mild Cognitive Impairment (MCI), and dementia due to Alzheimer's disease (AD) is a critical need. Functional decline is associated with risk and can be efficiently assessed by participants and study partners (SPs). We tested the hypothesis that SP-reported functional decline is an independent predictor of dementia risk and cognitive decline. METHODS:In 1048 older adults in the Alzheimer's Disease Neuroimaging Initiative (ADNI), we measured associations between Everyday Cognition Scale scores (ECog, self- and SP-reported versions) and (1) baseline and longitudinal change in neuropsychological test (NPT scores) across multiple cognitive domains; (2) diagnostic conversion to MCI or dementia. Models included Mini Mental Status Exam (MMSE) score and ApoE ε4 genotype (APOE) as predictors. Model fits were compared with and without predictors of interest included. RESULTS:SP-reported ECog was the strongest predictor of cognitive decline across multiple domains, as well as diagnostic conversion. Self-reported ECog was associated with baseline NPT scores in some cognitive domains, and diagnostic conversion to MCI in participants with biomarker evidence for AD (elevated brain β-amyloid, Aβ). Models including SP-reported ECog were significantly stronger at predicting outcomes. CONCLUSIONS:SP-reported functional decline is an independent indicator of cognitive decline and dementia risk, even when accounting for cognitive screening, genetic risk, demographics, and self-report decline. The results provide a rationale for greater utilization of SP-reported functional decline to identify those at risk for dementia due to AD and other causes

    Nonlinear Association Between Cerebrospinal Fluid and Florbetapir F-18 β-Amyloid Measures Across the Spectrum of Alzheimer Disease

    No full text
    ImportanceCerebrospinal fluid (CSF) and positron emission tomographic (PET) amyloid biomarkers have been proposed for the detection of Alzheimer disease (AD) pathology in living patients and for the tracking of longitudinal changes, but the relation between biomarkers needs further study.ObjectiveTo determine the association between CSF and PET amyloid biomarkers (cross-sectional and longitudinal measures) and compare the cutoffs for these measures.Design, setting, and participantsLongitudinal clinical cohort study from 2005 to 2014 including 820 participants with at least 1 florbetapir F-18 (hereafter referred to as simply florbetapir)-PET scan and at least 1 CSF β-amyloid 1-42 (Aβ1-42) sample obtained within 30 days of each other (501 participants had a second PET scan after 2 years, including 150 participants with CSF Aβ1-42 measurements). Data were obtained from the Alzheimer's Disease Neuroimaging Initiative database.Main outcomes and measuresFour different PET scans processing pipelines from 2 different laboratories were compared. The PET cutoff values were established using a mixture-modeling approach, and different mathematical models were applied to define the association between CSF and PET amyloid measures.ResultsThe values of the CSF Aβ1-42 samples and florbetapir-PET scans showed a nonlinear association (R2 = 0.48-0.66), with the strongest association for values in the middle range. The presence of a larger dynamic range of florbetapir-PET scan values in the higher range compared with the CSF Aβ1-42 plateau explained the differences in correlation with cognition (R2 = 0.36 and R2 = 0.25, respectively). The APOE genotype significantly modified the association between both biomarkers. The PET cutoff values derived from an unsupervised classifier converged with previous PET cutoff values and the established CSF Aβ1-42 cutoff levels. There was no association between longitudinal Aβ1-42 levels and standardized uptake value ratios during follow-up.Conclusions and relevanceThe association between both biomarkers is limited to a middle range of values, is modified by the APOE genotype, and is absent for longitudinal changes; 4 different approaches in 2 different platforms converge on similar pathological Aβ cutoff levels; and different pipelines to process PET scans showed correlated but not identical results. Our findings suggest that both biomarkers measure different aspects of AD Aβ pathology

    Brain charts for the human lifespan

    Get PDF
    Over the past 25 years, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, there are no reference standards against which to anchor measures of individual differences in brain morphology, in contrast to growth charts for traits such as height and weight. Here, we built an interactive online resource ( www.brainchart.io ) to quantify individual differences in brain structure from any current or future magnetic resonance imaging (MRI) study, against models of expected age-related trends. With the goal of basing these on the largest and most inclusive dataset, we aggregated MRI data spanning 115 days post-conception through 100 postnatal years, totaling 122,123 scans from 100,071 individuals in over 100 studies across 6 continents. When quantified as centile scores relative to the reference models, individual differences show high validity with non-MRI brain growth estimates and high stability across longitudinal assessment. Centile scores helped identify previously unreported brain developmental milestones and demonstrated increased genetic heritability compared to non-centiled MRI phenotypes. Crucially for the study of brain disorders, centile scores provide a standardised and interpretable measure of deviation that reveals new patterns of neuroanatomical differences across neurological and psychiatric disorders emerging during development and ageing. In sum, brain charts for the human lifespan are an essential first step towards robust, standardised quantification of individual variation and for characterizing deviation from age-related trends. Our global collaborative study provides such an anchorpoint for basic neuroimaging research and will facilitate implementation of research-based standards in clinical studies

    Publisher Correction: Brain charts for the human lifespan.

    Get PDF
    In the version of this article initially published, there were errors in the affiliations for K. Im (missing affiliation, Division of Newborn Medicine and Neuroradiology, Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA), J. Lerch (missing affiliation, Mouse Imaging Centre, Toronto, Ontario, Canada), S. Villeneuve and X. N. Zuo (incorrect affiliation numbers listed), H. Yun (missing affiliation, Division of Newborn Medicine and Neuroradiology, Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA), and H. J. Zar (extra affiliation shown). In addition, the affiliation numbers for all authors listed in the consortium membership section were incorrect by 1–3 digits. The errors have been corrected in the HTML and PDF versions of the article
    corecore