3 research outputs found

    RXTE and BeppoSAX Observations of the Transient X-ray Pulsar XTE J 18591+083

    Get PDF
    We present observations of the 9.8 s X-ray pulsar XTE J159+083 made with the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer (RXTE), and the Wide Field Cameras (WFC) on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD50, 250, and 50, 460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible 61 day modulation. Eighteen sets of PCA observations were obtained over an approx. one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease non-monotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give an error box which is consistent with a previously determined PCA error box but is significantly smaller. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutral star binary. The possible 61 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period

    Transient optical emission from the error box of the gamma-ray burst of 28 February 1997

    No full text
    For almost a quarter of a century(1), the origin of gamma-ray bursts-brief, energetic bursts of high-energy photons-has remained unknown. The detection of a counterpart at another wavelength has long been thought to be a key to understanding the nature of these bursts (see, for example, ref. 2), but intensive searches have not revealed such a counterpart. The distribution and properties of the bursts(3) are explained naturally if they lie at cosmological distances (a few Gpc)(4), but there is a countervailing view that they are relatively local objects(5), perhaps distributed in a very large halo around our Galaxy. Here we report the detection of a transient and fading optical source in the error box associated with the burst GRB970228, less than 21 hours after the burst(6,7). The optical transient appears to be associated with a faint galaxy(7,8), suggesting that the burst occurred in that galaxy and thus that gamma-ray bursts in general lie at cosmological distance
    corecore