1,511 research outputs found

    A Parametric Non-Convex Decomposition Algorithm for Real-Time and Distributed NMPC

    Get PDF
    A novel decomposition scheme to solve parametric non-convex programs as they arise in Nonlinear Model Predictive Control (NMPC) is presented. It consists of a fixed number of alternating proximal gradient steps and a dual update per time step. Hence, the proposed approach is attractive in a real-time distributed context. Assuming that the Nonlinear Program (NLP) is semi-algebraic and that its critical points are strongly regular, contraction of the sequence of primal-dual iterates is proven, implying stability of the sub-optimality error, under some mild assumptions. Moreover, it is shown that the performance of the optimality-tracking scheme can be enhanced via a continuation technique. The efficacy of the proposed decomposition method is demonstrated by solving a centralised NMPC problem to control a DC motor and a distributed NMPC program for collaborative tracking of unicycles, both within a real-time framework. Furthermore, an analysis of the sub-optimality error as a function of the sampling period is proposed given a fixed computational power.Comment: 16 pages, 9 figure

    A Parametric Multi-Convex Splitting Technique with Application to Real-Time NMPC

    Get PDF
    A novel splitting scheme to solve parametric multiconvex programs is presented. It consists of a fixed number of proximal alternating minimisations and a dual update per time step, which makes it attractive in a real-time Nonlinear Model Predictive Control (NMPC) framework and for distributed computing environments. Assuming that the parametric program is semi-algebraic and that its KKT points are strongly regular, a contraction estimate is derived and it is proven that the sub-optimality error remains stable if two key parameters are tuned properly. Efficacy of the method is demonstrated by solving a bilinear NMPC problem to control a DC motor.Comment: To appear in Proceedings of the 53rd IEEE Conference on Decision and Control 201

    An Alternating Trust Region Algorithm for Distributed Linearly Constrained Nonlinear Programs, Application to the AC Optimal Power Flow

    Get PDF
    A novel trust region method for solving linearly constrained nonlinear programs is presented. The proposed technique is amenable to a distributed implementation, as its salient ingredient is an alternating projected gradient sweep in place of the Cauchy point computation. It is proven that the algorithm yields a sequence that globally converges to a critical point. As a result of some changes to the standard trust region method, namely a proximal regularisation of the trust region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The proposed method is successfully applied to compute local solutions to alternating current optimal power flow problems in transmission and distribution networks. Moreover, the new mechanism for computing a Cauchy point compares favourably against the standard projected search as for its activity detection properties

    Entre Etat et marché : la difficile maîtrise du système de santé laotien

    Get PDF
    Cet article se propose d'analyser le système de santé laotien confronté à une crise grave de fréquentation et de ressources, dans le contexte du passage à une économie de marché permettant l'ouverture de pharmacies privées et de cliniques. Le champ de la santé se présente comme un terrain hautement politique en termes de contrôle social. La nature de l'Etat exerce une influence majeure sur le mode de gestion du système. Après avoir observé les contraintes générales et spécifiques, le poids du contexte politique, les pratiques et ajustements des acteurs sociaux dans cette période de transition et d'ambigütés, il faut constater que des choix essentiels de politiques de santé demeurent à opérer. (Résumé d'auteur
    • …
    corecore