809 research outputs found

    Quasi-thermal Comptonization and gamma-ray bursts

    Get PDF
    Quasi-thermal Comptonization in internal shocks formed between relativistic shells can account for the high energy emission of gamma-ray bursts. This is in fact the dominant cooling mechanism if the typical energy of the emitting particles is achieved either through the balance between heating and cooling or as a result of electron-positron pair production. Both processes yield sub or mildly relativistic energies. In this case the synchrotron spectrum is self-absorbed, providing the seed soft photons for the Comptonization process, whose spectrum is flat [F(v) ~ const], ending either in an exponential cutoff or a Wien peak, depending on the scattering optical depth of the emitting particles. Self-consistent particle energy and optical depth are estimated and found in agreement with the observed spectra.Comment: 10 pages, ApJ Letters, accepted for publicatio

    Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039

    Full text link
    Recent HESS observations show that microquasars in high-mass systems are sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray emission is developed. Using the head-on approximation for the Compton cross section and taking into account angular effects from the star's orbital motion, we derive expressions to calculate the spectrum of gamma rays when nonthermal jet electrons Compton-scatter photons of the stellar radiation field. Calculations are presented for power-law distributions of nonthermal electrons that are assumed to be isotropically distributed in the comoving jet frame, and applied to γ\gamma-ray observations of LS 5039. We conclude that (1) the TeV emission measured with HESS cannot result only from Compton-scattered stellar radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data associated with LS 5039 requires a very improbable leptonic model with a very hard electron spectrum. Because the gamma rays would be variable in a leptonic jet model, the data sets are unlikely to be representative of a simultaneously measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic modulation of the TeV emission from LS 5039 would favor a leptonic SSC or cascade hadron origin of the emission in the inner jet, whereas stochastic variability alone would support a more extended leptonic model. The puzzle of the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)Comment: 17 pages, 11 figures, ApJ, in press, June 1, 2006, corrected eq.

    Long-Term X-ray Spectral Variability in Seyfert 1 Galaxies

    Full text link
    Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert 1 galaxies in order to study their broadband spectral variability and Fe K alpha variability characteristics on time scales of days to years. Variability in the Fe K alpha line is not detected in some objects but is present in others, e.g., in NGC 3516, NGC 4151 and NGC 5548 there are systematic decreases in line flux by factors of ~2-5 over 3-4 years. The Fe K alpha line varies less strongly than the broadband continuum, but, like the continuum, exhibits stronger variability towards longer time scales. Relatively less model-dependent broadband fractional variability amplitude (Fvar) spectra also show weaker line variability compared to the continuum variability. Comparable systematic long-term decreases in the line and continuum are present in NGC 5548. Overall, however, there is no evidence for correlated variability between the line and continuum, severely challenging models in which the line tracks continuum variations modified only by a light-travel time delay. Local effects such as the formation of an ionized skin at the site of line emission may be relevant. The spectral fitting and Fvar spectra both support spectral softening as continuum flux increases.Comment: Accepted for publication in ApJ. 29 page

    Comparisons of various model fits to the Iron line profile in MCG-6-30-15

    Get PDF
    The broad Iron line in MCG-6-30-15 is fitted to the Comptonization model where line broadening occurs due to Compton down-scattering in a highly ionized optically thick cloud. These results are compared to the disk line model where the broadening is due to Gravitational/Doppler effects in the vicinity of a black hole. We find that both models fit the data well and it is not possible to differentiate between them by fitting only the ASCA data. The best fit temperature and optical depth of the cloud are found to be kT = 0.54 keV and τ=4.0\tau = 4.0 from the Comptonization model. This model further suggests that while the temperature can be assumed to be constant, the optical depth varies during the observation period. We emphasis an earlier conclusion that simultaneous broad band data (3503 - 50 keV) can rule out (or confirm) the Comptonization model.Comment: 4 figures. uses aasms4.sty, accepted by ApJ, email: [email protected]

    Self-Organized Criticality in Compact Plasmas

    Full text link
    Compact plasmas, that exist near black-hole candidates and in gamma ray burst sources, commonly exhibit self-organized non-linear behavior. A model that simulates the non-linear behavior of compact radiative plasmas is constructed directly from the observed luminosity and variability. The simulation shows that such plasmas self organize, and that the degree of non-linearity as well as the slope of the power density spectrum increase with compactness. The simulation is based on a cellular automaton table that includes the properties of the hot (relativistic) plasmas, and the magnitude of the energy perturbations. The plasmas cool or heat up, depending on whether they release more or less than the energy of a single perturbation. The energy release depends on the plasmas densities and temperatures, and the perturbations energy. Strong perturbations may cool the previously heated plasma through shocks and/or pair creation. New observations of some active galactic nuclei and gamma ray bursters are consistent with the simulationComment: 9 pages, 5 figures, AASTeX, Submitted to ApJ

    High-Energy Spectral Complexity from Thermal Gradients in Black Hole Atmospheres

    Full text link
    We show that Compton scattering of soft photons with energies near 100 eV in thermally stratified black-hole accretion plasmas with temperatures in the range 100 keV - 1 MeV can give rise to an X-ray spectral hardening near 10 keV. This could produce the hardening observed in the X-ray spectra of black holes, which is generally attributed to reflection or partial covering of the incident continuum source by cold optically thick matter. In addition, we show that the presence of very hot (kT=1 MeV) cores in plasmas leads to spectra exibiting high energy tails similar to those observed from Galactic black-hole candidates.Comment: 11 pages, uuencoded gziped postscript, ApJ Letters in pres

    On the lack of X-ray iron line reverberation in MCG-6-30-15: Implications for the black hole mass and accretion disk structure

    Get PDF
    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverberation and exclude reverberation delays in the range 0.5-50ksec. This extends the conclusions of Lee et al. and suggests that the iron line flux remains constant on timescales as short as 0.5ksec. The large black hole mass (>10^8Msun) naively suggested by the constancy of the iron line flux is rejected on other grounds. We suggest that the black hole in MCG-6-30-15 has a mass of M_BH~10^6-10^7Msun and that changes in the ionization state of the disk may produce the puzzling spectral variability. Finally, it is found that the 8-15keV band lags the 2-4keV band by 50-100s. This result is used to place constraints on the size and geometry of the Comptonizing medium responsible for the hard X-ray power-law in this AGN.Comment: 11 pages, 13 postscript figures. Accepted for publication in Ap

    Thermalization of a nonequilibrium electron-positron-photon plasma

    Full text link
    Starting from a nonequilibrium configuration we analyse the essential role of the direct and the inverse binary and triple interactions in reaching an asymptotic thermal equilibrium in a homogeneous isotropic electron-positron-photon plasma. We focus on energies in the range 0.1--10 MeV. We numerically integrate the integro-partial differential relativistic Boltzmann equation with the exact QED collisional integrals taking into account all binary and triple interactions in the plasma. We show that first, when detailed balance is reached for all binary interactions on a timescale tk1014t_{k}\lesssim10^{-14}sec, photons and electron-positron pairs establish kinetic equilibrium. Successively, when triple interactions fulfill the detailed balance on a timescale teq1012t_{eq}\lesssim10^{-12}sec, the plasma reaches thermal equilibrium. It is shown that neglecting the inverse triple interactions prevents reaching thermal equilibrium. Our results obtained in the theoretical physics domain also find application in astrophysics and cosmology.Comment: 4 pages, 3 figures, Phys. Rev. Lett., to appea

    On Pair Content and Variability of Sub-Parsec Jets in Quasars

    Get PDF
    X-ray observations of blazars associated with the OVV (Optically Violently Variable) quasars put strong constraints on the electron - positron pair content of radio-loud quasar jets. From those observations, we infer that jets in quasars contain many more electron - positron pairs than protons, but dynamically are still dominated by protons. In particular, we show that pure electron - positron jet models can be excluded, as they overpredict soft X-ray radiation; likewise, pure proton - electron jets can be excluded, as they predict too weak nonthermal X-ray radiation. An intermediate case is viable. We demonstrate that jets which are initially proton-electron ("proto-jets") can be pair-loaded via interaction with 100 - 300 keV photons produced in hot accretion disc coronae, likely to exist in active galactic nuclei in general. If the coronal radiation is powered by magnetic flares, the pair loading is expected to be non-uniform and non-axisymmetric. Together with radiation drag, this leads to velocity and density perturbations in a jet and formation of shocks, where the pairs are accelerated. Such a scenario can explain rapid (time scale of about a day) variability observed in OVV quasars.Comment: Accepted for publication in the Astrophysical Journa
    corecore