17 research outputs found

    Black Hole Lightning from the Peculiar Gamma-Ray Loud Active Galactic Nucleus IC 310

    Full text link
    The nearby active galaxy IC 310, located in the outskirts of the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Originally, the nucleus of IC 310 has been classified as a radio galaxy. However, studies of the multi-wavelength emission showed several properties similarly to those found from blazars as well as radio galaxies. In late 2012, we have organized the first contemporaneous multi-wavelength campaign including radio, optical, X-ray and gamma-ray instruments. During this campaign an exceptionally bright flare of IC 310 was detected with the MAGIC telescopes in November 2012 reaching an averaged flux level in the night of up to one Crab above 1 TeV with a hard spectrum over two decades in energy. The intra-night light curve showed a series of strong outbursts with flux-doubling time scales as fast as a few minutes. The fast variability constrains the size of the gamma-ray emission regime to be smaller than 20% of the gravitational radius of its central black hole. This challenges the shock acceleration models, commonly used to explain gamma-ray radiation from active galaxies. Here, we will present more details on the MAGIC data and discuss several possible alternative emission models.Comment: 8 pages, 5 figures, Proceedings of the 34th International Cosmic Ray Conference, 30 July - 6 August, 2015, The Hague, The Netherland

    High-energy Neutrino Astronomy: The Cosmic Ray Connection

    Full text link
    This is a review of neutrino astronomy anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 102010^{20} and 101310^{13} eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. Basic elementary-particle physics dictates a universal upper limit on their energy of 5×10195\times10^{19} eV, the so-called Greisen-Kuzmin-Zatsepin cutoff; however, particles in excess of this energy have been observed by all experiments, adding one more puzzle to the cosmic ray mystery. Mystery is fertile ground for progress: we will review the facts as well as the speculations about the sources including gamma ray bursts, blazars and top-down scenarios. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. We also briefly review the ongoing efforts to commission such instrumentation.Comment: 83 pages, 18 figures, submitted to Reports on Progress in Physic
    corecore