885 research outputs found
Melting of a 2D Quantum Electron Solid in High Magnetic Field
The melting temperature () of a solid is generally determined by the
pressure applied to it, or indirectly by its density () through the equation
of state. This remains true even for helium solids\cite{wilk:67}, where quantum
effects often lead to unusual properties\cite{ekim:04}. In this letter we
present experimental evidence to show that for a two dimensional (2D) solid
formed by electrons in a semiconductor sample under a strong perpendicular
magnetic field\cite{shay:97} (), the is not controlled by , but
effectively by the \textit{quantum correlation} between the electrons through
the Landau level filling factor =. Such melting behavior, different
from that of all other known solids (including a classical 2D electron solid at
zero magnetic field\cite{grim:79}), attests to the quantum nature of the
magnetic field induced electron solid. Moreover, we found the to increase
with the strength of the sample-dependent disorder that pins the electron
solid.Comment: Some typos corrected and 2 references added. Final version with minor
editoriol revisions published in Nature Physic
Surat Tugas untuk presentasi karya ilmiah "Tinjauan Sastra Anak Indonesia Multikultural Berbahasa Inggris: Tema dan Fitur Kunci" yang dipresentasikan dalam rangkaian acara Dies Natalis Fakultas Ilmu Budaya ke-39 pada tanggal 8 Maret 2021 dan diterbitkan dalam Prosiding Seminar Nasional "Peran Ilmu-Ilmu Budaya dalam Pemajuan Budaya" (Editor: Sudarmoko / Novalinda) sebagai penulis pertama. Penerbit: LPPM UNAND PRESS, 8 Maret 2021.
Surat Tugas untuk presentasi karya ilmiah "Tinjauan Sastra Anak Indonesia Multikultural Berbahasa Inggris: Tema dan Fitur Kunci" yang dipresentasikan dalam rangkaian acara Dies Natalis Fakultas Ilmu Budaya ke-39 pada tanggal 8 Maret 2021 dan diterbitkan dalam Prosiding Seminar Nasional "Peran Ilmu-Ilmu Budaya dalam Pemajuan Budaya" (Editor: Sudarmoko / Novalinda) sebagai penulis pertama. Penerbit: LPPM UNAND PRESS, 8 Maret 2021
Wigner Crystallization in a Quasi-3D Electronic System
When a strong magnetic field is applied perpendicularly (along z) to a sheet
confining electrons to two dimensions (x-y), highly correlated states emerge as
a result of the interplay between electron-electron interactions, confinement
and disorder. These so-called fractional quantum Hall (FQH) liquids form a
series of states which ultimately give way to a periodic electron solid that
crystallizes at high magnetic fields. This quantum phase of electrons has been
identified previously as a disorder-pinned two-dimensional Wigner crystal with
broken translational symmetry in the x-y plane. Here, we report our discovery
of a new insulating quantum phase of electrons when a very high magnetic field,
up to 45T, is applied in a geometry parallel (y-direction) to the
two-dimensional electron sheet. Our data point towards this new quantum phase
being an electron solid in a "quasi-3D" configuration induced by orbital
coupling with the parallel field
CFRP flexural and shear strengthening technique for RC beams : experimental and numerical research
Near surface mounted (NSM) technique has proved to be a very effective
technique for the flexural strengthening of RC beams. Due to the relatively small
thickness of the concrete cover that several beams present, cutting the bottom arm of
steel stirrups for the installation of NSM laminates might be a possible strategy, whose
implications on the beam’s load carrying capacity need to be assessed. When steel
stirrups are cut, however, the shear resistance can be a concern. This also happens
when a strengthening intervention is carried out to increase the flexural resistance of a
beam, since in certain cases it is also necessary to increase the shear resistance in order
to avoid the occurrence of brittle shear failure. The present work assesses the
effectiveness of a technique that aims to increase both the flexural and shear resistance
of RC beams that have the bottom arm of the steel stirrups cut for the application of
NSM laminates. This assessment is performed by experimental and numerical
research. The main results of the experimental program are presented and analyzed,
and the innovative aspects of a constitutive model implemented in a computer program
are described, being their virtues and deficiencies discussed.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The second Author acknowledges the grant under the aforementioned research project. The third author acknowledges the financial support of FCT, PhD Grant number SFRH/BD/23326/2005
- …
