17 research outputs found
Fluid balance and urine volume are independent predictors of mortality in acute kidney injury.
INTRODUCTION: In ICUs, both fluid overload and oliguria are common complications associated with increased mortality among critically ill patients, particularly in acute kidney injury (AKI). Although fluid overload is an expected complication of oliguria, it remains unclear whether their effects on mortality are independent of each other. The aim of this study is to evaluate the impact of both fluid balance and urine volume on outcomes and determine whether they behave as independent predictors of mortality in adult ICU patients with AKI. METHODS: We performed a secondary analysis of data from a multicenter, prospective cohort study in 10 Italian ICUs. AKI was defined by renal sequential organ failure assessment (SOFA) score (creatinine >3.5 mg/dL or urine output (UO) <500 mL/d). Oliguria was defined as a UO <500 mL/d. Mean fluid balance (MFB) and mean urine volume (MUV) were calculated as the arithmetic mean of all daily values. Use of diuretics was noted daily. To assess the impact of MFB and MUV on mortality of AKI patients, multivariate analysis was performed by Cox regression. RESULTS: Of the 601 included patients, 132 had AKI during their ICU stay and the mortality in this group was 50\%. Non-surviving AKI patients had higher MFB (1.31 ± 1.24 versus 0.17 ± 0.72 L/day; P <0.001) and lower MUV (1.28 ± 0.90 versus 2.35 ± 0.98 L/day; P <0.001) as compared to survivors. In the multivariate analysis, MFB (adjusted hazard ratio (HR) 1.67 per L/day, 95\%CI 1.33 to 2.09; <0.001) and MUV (adjusted HR 0.47 per L/day, 95\%CI 0.33 to 0.67; <0.001) remained independent risk factors for 28-day mortality after adjustment for age, gender, diabetes, hypertension, diuretic use, non-renal SOFA and sepsis. Diuretic use was associated with better survival in this population (adjusted HR 0.25, 95\%CI 0.12 to 0.52; <0.001). CONCLUSIONS: In this multicenter ICU study, a higher fluid balance and a lower urine volume were both important factors associated with 28-day mortality of AKI patients
Therapeutic strategies to slow chronic kidney disease progression
Childhood chronic kidney disease commonly progresses toward end-stage renal failure, largely independent of the underlying disorder, once a critical impairment of renal function has occurred. Hypertension and proteinuria are the most important independent risk factors for renal disease progression. Therefore, current therapeutic strategies to prevent progression aim at controlling blood pressure and reducing urinary protein excretion. Renin-angiotensin-system (RAS) antagonists preserve kidney function not only by lowering blood pressure but also by their antiproteinuric, antifibrotic, and anti-inflammatory properties. Intensified blood pressure control, probably aiming for a target blood pressure below the 75th percentile, may exert additional renoprotective effects. Other factors contributing in a multifactorial manner to renal disease progression include dyslipidemia, anemia, and disorders of mineral metabolism. Measures to preserve renal function should therefore also comprise the maintenance of hemoglobin, serum lipid, and calcium-phosphorus ion product levels in the normal range
Fluid balance and urine volume are independent predictors of mortality in acute kidney injury.
INTRODUCTION: In ICUs, both fluid overload and oliguria are common complications associated with increased mortality among critically ill patients, particularly in acute kidney injury (AKI). Although fluid overload is an expected complication of oliguria, it remains unclear whether their effects on mortality are independent of each other. The aim of this study is to evaluate the impact of both fluid balance and urine volume on outcomes and determine whether they behave as independent predictors of mortality in adult ICU patients with AKI. METHODS: We performed a secondary analysis of data from a multicenter, prospective cohort study in 10 Italian ICUs. AKI was defined by renal sequential organ failure assessment (SOFA) score (creatinine >3.5 mg/dL or urine output (UO) <500 mL/d). Oliguria was defined as a UO <500 mL/d. Mean fluid balance (MFB) and mean urine volume (MUV) were calculated as the arithmetic mean of all daily values. Use of diuretics was noted daily. To assess the impact of MFB and MUV on mortality of AKI patients, multivariate analysis was performed by Cox regression. RESULTS: Of the 601 included patients, 132 had AKI during their ICU stay and the mortality in this group was 50\%. Non-surviving AKI patients had higher MFB (1.31 ± 1.24 versus 0.17 ± 0.72 L/day; P <0.001) and lower MUV (1.28 ± 0.90 versus 2.35 ± 0.98 L/day; P <0.001) as compared to survivors. In the multivariate analysis, MFB (adjusted hazard ratio (HR) 1.67 per L/day, 95\%CI 1.33 to 2.09; <0.001) and MUV (adjusted HR 0.47 per L/day, 95\%CI 0.33 to 0.67; <0.001) remained independent risk factors for 28-day mortality after adjustment for age, gender, diabetes, hypertension, diuretic use, non-renal SOFA and sepsis. Diuretic use was associated with better survival in this population (adjusted HR 0.25, 95\%CI 0.12 to 0.52; <0.001). CONCLUSIONS: In this multicenter ICU study, a higher fluid balance and a lower urine volume were both important factors associated with 28-day mortality of AKI patients
Fluid balance and urine volume are independent predictors of mortality in acute kidney injury.
Introduction
In ICUs, both fluid overload and oliguria are common complications associated with increased mortality among critically ill patients, particularly in acute kidney injury (AKI). Although fluid overload is an expected complication of oliguria, it remains unclear whether their effects on mortality are independent of each other. The aim of this study is to evaluate the impact of both fluid balance and urine volume on outcomes and determine whether they behave as independent predictors of mortality in adult ICU patients with AKI.
Methods
We performed a secondary analysis of data from a multicenter, prospective cohort study in 10 Italian ICUs. AKI was defined by renal sequential organ failure assessment (SOFA) score (creatinine >3.5 mg/dL or urine output (UO) <500 mL/d). Oliguria was defined as a UO <500 mL/d. Mean fluid balance (MFB) and mean urine volume (MUV) were calculated as the arithmetic mean of all daily values. Use of diuretics was noted daily. To assess the impact of MFB and MUV on mortality of AKI patients, multivariate analysis was performed by Cox regression.
Results
Of the 601 included patients, 132 had AKI during their ICU stay and the mortality in this group was 50%. Non-surviving AKI patients had higher MFB (1.31 ± 1.24 versus 0.17 ± 0.72 L/day; P <0.001) and lower MUV (1.28 ± 0.90 versus 2.35 ± 0.98 L/day; P <0.001) as compared to survivors. In the multivariate analysis, MFB (adjusted hazard ratio (HR) 1.67 per L/day, 95%CI 1.33 to 2.09; <0.001) and MUV (adjusted HR 0.47 per L/day, 95%CI 0.33 to 0.67; <0.001) remained independent risk factors for 28-day mortality after adjustment for age, gender, diabetes, hypertension, diuretic use, non-renal SOFA and sepsis. Diuretic use was associated with better survival in this population (adjusted HR 0.25, 95%CI 0.12 to 0.52; <0.001).
Conclusions
In this multicenter ICU study, a higher fluid balance and a lower urine volume were both important factors associated with 28-day mortality of AKI patients
Fluid balance and urine volume are independent predictors of mortality in acute kidney injury
In ICUs, both fluid overload and oliguria are common complications associated with increased mortality among critically ill patients, particularly in acute kidney injury (AKI). Although fluid overload is an expected complication of oliguria, it remains unclear whether their effects on mortality are independent of each other. The aim of this study is to evaluate the impact of both fluid balance and urine volume on outcomes and determine whether they behave as independent predictors of mortality in adult ICU patients with AKI.
METHODS:
We performed a secondary analysis of data from a multicenter, prospective cohort study in 10 Italian ICUs. AKI was defined by renal sequential organ failure assessment (SOFA) score (creatinine >3.5 mg/dL or urine output (UO) <500 mL/d). Oliguria was defined as a UO <500 mL/d. Mean fluid balance (MFB) and mean urine volume (MUV) were calculated as the arithmetic mean of all daily values. Use of diuretics was noted daily. To assess the impact of MFB and MUV on mortality of AKI patients, multivariate analysis was performed by Cox regression.
RESULTS:
Of the 601 included patients, 132 had AKI during their ICU stay and the mortality in this group was 50%. Non-surviving AKI patients had higher MFB (1.31 \ub1 1.24 versus 0.17 \ub1 0.72 L/day; P <0.001) and lower MUV (1.28 \ub1 0.90 versus 2.35 \ub1 0.98 L/day; P <0.001) as compared to survivors. In the multivariate analysis, MFB (adjusted hazard ratio (HR) 1.67 per L/day, 95%CI 1.33 to 2.09; <0.001) and MUV (adjusted HR 0.47 per L/day, 95%CI 0.33 to 0.67; <0.001) remained independent risk factors for 28-day mortality after adjustment for age, gender, diabetes, hypertension, diuretic use, non-renal SOFA and sepsis. Diuretic use was associated with better survival in this population (adjusted HR 0.25, 95%CI 0.12 to 0.52; <0.001)