1,438 research outputs found

    Group Theory of Non-Abelian Vortices

    Full text link
    We investigate the structure of the moduli space of multiple BPS non-Abelian vortices in U(N) gauge theory with N fundamental Higgs fields, focusing our attention on the action of the exact global (color-flavor diagonal) SU(N) symmetry on it. The moduli space of a single non-Abelian vortex, CP(N-1), is spanned by a vector in the fundamental representation of the global SU(N) symmetry. The moduli space of winding-number k vortices is instead spanned by vectors in the direct-product representation: they decompose into the sum of irreducible representations each of which is associated with a Young tableau made of k boxes, in a way somewhat similar to the standard group composition rule of SU(N) multiplets. The K\"ahler potential is exactly determined in each moduli subspace, corresponding to an irreducible SU(N) orbit of the highest-weight configuration.Comment: LaTeX 46 pages, 4 figure

    Non-Abelian vortex dynamics: Effective world-sheet action

    Full text link
    The low-energy vortex effective action is constructed in a wide class of systems in a color-flavor locked vacuum, which generalizes the results found earlier in the context of U(N) models. It describes the weak fluctuations of the non-Abelian orientational moduli on the vortex worldsheet. For instance, for the minimum vortex in SO(2N) x U(1) or USp(2N) x U(1) gauge theories, the effective action found is a two-dimensional sigma model living on the Hermitian symmetric spaces SO(2N)/U(N) or USp(2N)/U(N), respectively. The fluctuating moduli have the structure of that of a quantum particle state in spinor representations of the GNO dual of the color-flavor SO(2N) or USp(2N) symmetry, i.e. of SO(2N) or of SO(2N+1). Applied to the benchmark U(N) model our procedure reproduces the known CP(N-1) worldsheet action; our recipe allows us to obtain also the effective vortex action for some higher-winding vortices in U(N) and SO(2N) theories.Comment: LaTeX, 25 pages, 0 figure

    Vortices on Orbifolds

    Full text link
    The Abelian and non-Abelian vortices on orbifolds are investigated based on the moduli matrix approach, which is a powerful method to deal with the BPS equation. The moduli space and the vortex collision are discussed through the moduli matrix as well as the regular space. It is also shown that a quiver structure is found in the Kahler quotient, and a half of ADHM is obtained for the vortex theory on the orbifolds as the case before orbifolding.Comment: 25 pages, 4 figures; references adde

    Supersymmetry Breaking on Gauged Non-Abelian Vortices

    Full text link
    There are a large number of systems characterized by a completely broken gauge symmetry, but with an unbroken global color-flavor diagonal symmetry, i.e., systems in the so-called color-flavor locked phase. If the gauge symmetry breaking supports vortices, the latter develop non-Abelian orientational zero-modes and become non-Abelian vortices, a subject of intense study in the last several years. In this paper we consider the effects of weakly gauging the full exact global flavor symmetry in such systems, deriving an effective description of the light excitations in the presence of a vortex. Surprising consequences are shown to follow. The fluctuations of the vortex orientational modes get diffused to bulk modes through tunneling processes. When our model is embedded in a supersymmetric theory, the vortex is still 1/2 BPS saturated, but the vortex effective action breaks supersymmetry spontaneously.Comment: Latex, 24 pages, 1 figur

    Type I Non-Abelian Superconductors in Supersymmetric Gauge Theories

    Full text link
    Non-BPS non-Abelian vortices with CP^1 internal moduli space are studied in an N=2 supersymmetric U(1) x SU(2) gauge theory with softly breaking adjoint mass terms. For generic internal orientations the classical force between two vortices can be attractive or repulsive. On the other hand, the mass of the scalars in the theory is always less than that of the vector bosons; also, the force between two vortices with the same CP^1 orientation is always attractive: for these reasons we interpret our model as a non-Abelian generalization of type I superconductors. We compute the effective potential in the limit of two well separated vortices. It is a function of the distance and of the relative colour-flavour orientation of the two vortices; in this limit we find an effective description in terms of two interacting CP^1 sigma models. In the limit of two coincident vortices we find two different solutions with the same topological winding and, for generic values of the parameters, different tensions. One of the two solutions is described by a CP^1 effective sigma model, while the other is just an Abelian vortex without internal degrees of freedom. For generic values of the parameters, one of the two solutions is metastable, while there are evidences that the other one is truly stable.Comment: 35 pages, 8 figures. v2: fixed typos and added small comments, v3 removed an unecessary figur

    Static Interactions of non-Abelian Vortices

    Full text link
    Interactions between non-BPS non-Abelian vortices are studied in non-Abelian U(1) x SU(N) extensions of the Abelian-Higgs model in four dimensions. The distinctive feature of a non-Abelian vortex is the presence of an internal CP^{N-1} space of orientational degrees of freedom. For fine-tuned values of the couplings, the vortices are BPS and there is no net force between two static parallel vortices at arbitrary distance. On the other hand, for generic values of the couplings the interactions between two vortices depend non-trivially on their relative internal orientations. We discuss the problem both with a numerical approach (valid for small deviations from the BPS limit) and in a semi-analytical way (valid at large vortex separations). The interactions can be classified with respect to their asymptotic property at large vortex separation. In a simpler fine-tuned model, we find two regimes which are quite similar to the usual type I/II Abelian superconductors. In the generic model we find other two new regimes: type I*/II*. Unlike the type I (type II) case, where the interaction is always attractive (repulsive), the type I* and II* have both attractive and repulsive interactions depending on the relative orientation. We have found a rich variety of interactions at small vortex separations. For some values of the couplings, a bound state of two static vortices at a non-zero distance exists.Comment: 36 pages, 13 figures; v2 a small comment and a reference adde

    Structurally Parameterized d-Scattered Set

    Full text link
    In dd-Scattered Set we are given an (edge-weighted) graph and are asked to select at least kk vertices, so that the distance between any pair is at least dd, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of this problem with respect to various standard graph parameters. In particular, we show the following: - For any d2d\ge2, an O(dtw)O^*(d^{\textrm{tw}})-time algorithm, where tw\textrm{tw} is the treewidth of the input graph. - A tight SETH-based lower bound matching this algorithm's performance. These generalize known results for Independent Set. - dd-Scattered Set is W[1]-hard parameterized by vertex cover (for edge-weighted graphs), or feedback vertex set (for unweighted graphs), even if kk is an additional parameter. - A single-exponential algorithm parameterized by vertex cover for unweighted graphs, complementing the above-mentioned hardness. - A 2O(td2)2^{O(\textrm{td}^2)}-time algorithm parameterized by tree-depth (td\textrm{td}), as well as a matching ETH-based lower bound, both for unweighted graphs. We complement these mostly negative results by providing an FPT approximation scheme parameterized by treewidth. In particular, we give an algorithm which, for any error parameter ϵ>0\epsilon > 0, runs in time O((tw/ϵ)O(tw))O^*((\textrm{tw}/\epsilon)^{O(\textrm{tw})}) and returns a d/(1+ϵ)d/(1+\epsilon)-scattered set of size kk, if a dd-scattered set of the same size exists

    Quantum SUSY Algebra of QQ-lumps in the Massive Grassmannian Sigma Model

    Full text link
    We compute the N=2\mathcal{N}=2 SUSY algebra of the massive Grassmannian sigma model in 2+1 dimensions. We first rederive the action of the model by using the Scherk-Schwarz dimensional reduction from N=1\mathcal{N}=1 theory in 3+1 dimensions. Then, we perform the canonical quantization by using the Dirac method. We find that a particular choice of the operator ordering yields the quantum SUSY algebra of the QQ-lumps with cental extension.Comment: 7 pages, references adde

    Vortices and Monopoles in Mass-deformed SO and USp Gauge Theories

    Full text link
    Effects of mass deformations on 1/2 Bogomol'nyi-Prasad-Sommerfield (BPS) non-Abelian vortices are studied in 4d N=2 supersymmetric U(1) \times SO(2n) and U(1) \times USp(2n) gauge theories, with Nf=2n quark multiplets. The 2d N=(2,2) effective worldsheet sigma models on the Hermitian symmetric spaces SO(2n)/U(n) and USp(2n)/U(n) found recently which describe the low-energy excitations of the orientational moduli of the vortices, are generalized to the respective massive sigma models. The continuous vortex moduli spaces are replaced by a finite number (2^{n-1} or 2^{n}) of vortex solutions. The 1/2 BPS kinks connecting different vortex vacua are magnetic monopoles in the 4d theory, trapped inside the vortex core, with total configurations being 1/4 BPS composite states. These configurations are systematically studied within the semi-classical regime.Comment: 55 pages, 7 figure

    Radio-frequency operation of a double-island single-electron transistor

    Full text link
    We present results on a double-island single-electron transistor (DISET) operated at radio-frequency (rf) for fast and highly sensitive detection of charge motion in the solid state. Using an intuitive definition for the charge sensitivity, we compare a DISET to a conventional single-electron transistor (SET). We find that a DISET can be more sensitive than a SET for identical, minimum device resistances in the Coulomb blockade regime. This is of particular importance for rf operation where ideal impedance matching to 50 Ohm transmission lines is only possible for a limited range of device resistances. We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together with a demonstration of single-shot detection of small (<=0.1e) charge signals on microsecond timescales.Comment: 6 pages, 6 figure
    corecore