529 research outputs found

    Towards Fully Additively-Manufactured Permanent Magnet Synchronous Machines: Opportunities and Challenges

    Get PDF
    With the growing interest in electrification and as hybrid and pure electric powertrains are adopted in more applications, electrical machine design is facing challenges in terms of meeting very demanding performance metrics for example high specific power, harsh environments, etc. This provides clear motivation to explore the impact of advanced materials and manufacturing on the performance of electrical machines. This paper provides an overview of additive manufacturing (AM) approaches that can be used for constructing permanent magnet (PM) machines, with a specific focus on additively-manufactured iron core, winding, insulation, PM as well as cooling systems. Since there has only been a few attempts so far to explore AM in electrical machines (especially when it comes to fully additively-manufactured machines), the benefits and challenges of AM have not been comprehensively understood. In this regard, this paper offers a detailed comparison of multiple multi-material AM methods, showing not only the possibility of fully additively-manufactured PM machines but also the potential significant improvements in their mechanical, electromagnetic and thermal properties. The paper will provide a comprehensive discussion of opportunities and challenges of AM in the context of electrical machines

    High Specific Power Electrical Machines: A System Perspective

    Get PDF
    There has been a growing need for high specific power electrical machines for a wide range of applications. These include hybrid/electric traction applications, aerospace applications and Oil and Gas applications. A lot of work has been done to accomplish significantly higher specific power electrical machines especially for aerospace applications. Several machine topologies as well as thermal management schemes have been proposed. Even though there has been a few publications that provided an overview of high-speed and high specific power electrical machines [1-3], the goal of this paper is to provide a more comprehensive review of high specific power electrical machines with special focus on machines that have been built and tested and are considered the leading candidates defining the state-of-the art. Another key objective of this paper is to highlight the key “system-level” tradeoffs involved in pushing electrical machines to higher specific power. Focusing solely on the machine specific power can lead to a sub-optimal solution at the system-level

    A Study About the Law of Jordanian Constitutional Court

    Get PDF
    The research is financed by Applied Science Private University/ Jordan Abstract The Political and constitutional jurisprudence agreed unanimously on recognizing the constitutions according to the principle of supremeness – i.e. subjective supremeness. This means that the topics discussed by such constitutions are supreme topics as they are the power and freedom laws. The principle of constitutions' supremeness also means the formal supremeness as the principle of constitution's supremeness forms the most important bases, elements and topics of the state of Law.So, it is necessary to maintain the supreme position of the constitution regarding the topics and the content or in the procedures and formalities necessary for enacting or amending the constitution. Therefore, there is an urgent need for the existence of a judicial agency or a political one undertaking to maintain the supreme position of the constitution.The Jordanian constitution has not controlled the constitutionality of the laws prior to the amendments done to some of its articles in 2011. so, the control done on the constitutionality of the laws was the abstention control. Pursuant to the said constitutional amendments, the constitutional court was established with enacting its law. It has become the sole agency entrusted to control the constitutionality of the laws whereas the researcher discussed the way of forming such court and the methods of how to defend the unconstitutionality before it. the researcher also discussed the manner of forming such court and how the unconstitutionality lawsuits can be pursued before it. Keywords: Constitutionality of laws, Constitutional Court, Judicial Control, abstention control, political control, defending with unconstitutionality, interpreting the texts of the constitution

    High-Torque-Density Low-Cost Magnetic Gear Utilizing Hybrid Magnets and Advanced Materials

    Get PDF
    Two major challenges of existing high-performance magnetic gears are: (i) High content of rare-earth permanent magnets which results in high cost as well as price fluctuation; (ii) Conflict between mechanical and electromagnetic performances, especially in the design of highspeed rotor. A magnetic gear using a blend of magnet types, i.e NdFeB, or Dy-free NdFeB and ferrites, is proposed in this paper. The goal is to bring down the cost while retaining comparable torque-transducing performance to a baseline magnetic gear only using rare-earth NdFeB magnets. A variety of topologies based on different combinations of magnet types and geometric shapes have been studied and compared. In addition, the potential impact of using an advanced dual-phase material is evaluated. The goal is to eliminate the well-known tradeoff between rotor mechanical integrity and PM flux leakage

    Permanent Magnet Vernier Machine: A Review

    Get PDF
    Permanent magnet vernier machines (PMVMs) gained a lot of interest over the past couple of decades. This is mainly due to their high torque density enabled by the magnetic gearing effect. This study will provide a thorough review of recent advances in PMVMs. This review will cover the principle of operation and nature of magnetic gearing in PMVMs, and a better understanding of novel PMVM topologies using different winding configuration as well as different modulation poles and rotor structures. Detailed discussions on the choice of gear ratio, slot-pole combinations, design optimisation and role of advanced materials in PMVMs will be presented. This will provide an update on the current state-of-the art as well as future areas of research. Furthermore, the power factor issue, fault tolerance as well as cost reduction will be discussed highlighting the gap between the current state-of-the art and what is needed in practical applications

    Comparison and Design Optimization of a Five-Phase Flux-Switching PM Machine for In-Wheel Traction Applications

    Get PDF
    A comparative study of five-phase outer-rotor flux-switching permanent magnet (FSPM) machines with different topologies for in-wheel traction applications is presented in this paper. Those topologies include double-layer winding, single-layer winding, C-core, and E-core configurations. The electromagnetic performance in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerance capability are all investigated in detail. The results indicate that the E-core FSPM machine has performance advantages. Furthermore, two kinds of E-core FSPM machines with different stator and rotor pole combinations are optimized, respectively. In order to reduce the computational burden during the large-scale optimization process, a mathematical technique is developed based on the concept of computationally efficient finite-element analysis. While a differential evolution algorithm serves as a global search engine to target optimized designs. Subsequently, multiobjective tradeoffs are presented based on a Pareto-set for 20 000 candidate designs. Finally, an optimal design is prototyped, and some experimental results are given to confirm the validity of the simulation results in this paper

    Computationally Efficient Optimization of a Five-Phase Flux-Switching PM Machine Under Different Operating Conditions

    Get PDF
    This paper investigates the comparative design optimizations of a five-phase outer-rotor flux-switching permanent magnet (FSPM) machine for in-wheel traction applications. To improve the comprehensive performance of the motor, two kinds of large-scale design optimizations under different operating conditions are performed and compared, including the traditional optimization performed at the rated operating point and the optimization targeting the whole driving cycles. Three driving cycles are taken into account, namely, the urban dynamometer driving schedule (UDDS), the highway fuel economy driving schedule (HWFET), and the combined UDDS/HWFET, representing the city, highway, and combined city/highway driving, respectively. Meanwhile, the computationally efficient finite-element analysis (CE-FEA) method, the cyclic representative operating points extraction technique, as well as the response surface methodology (in order to minimize the number of experiments when establishing the inverse machine model), are presented to reduce the computational effort and cost. From the results and discussion, it will be found that the optimization results against different operating conditions exhibit distinct characteristics in terms of geometry, efficiency, and energy loss distributions. For the traditional optimization performed at the rated operating point, the optimal design tends to reduce copper losses but suffer from high core losses; for UDDS, the optimal design tends to minimize both copper losses and PM eddy-current losses in the low-speed region; for HWFET, the optimal design tends to minimize core losses in the high-speed region; for the combined UDDS/HWFET, the optimal design tends to balance/compromise the loss components in both the low-speed and high-speed regions. Furthermore, the advantages of the adopted optimization methodologies versus the traditional procedure are highlighted

    Reconsidering 'image metaphor' in the light of perceptual simulation theory

    Get PDF
    “Image metaphor” is defined in conceptual metaphor theory (CMT) as a mapping of visual structure from one entity onto another based on the mental images they evoke. It is considered an exceptional, one-off phenomenon that is most commonly found in literary discourses. However, according to perceptual simulation theory, all language, both literal and metaphorical, is understood partially by simulating in our minds what it would be like to actually perceive the things that are being described. These findings call into question the original distinction between image metaphors and the more prototypical correlation metaphors that have always been the focus of CMT. As I will argue in this article, there are nevertheless important differences regarding the detail, vividness and complexity of the mental imagery invited by these two types of metaphor. Since it is hard to consider visualization in the abstract, examples of pictorial equivalents of image metaphors will be used to support my argumentation

    Auditory training and adult rehabilitation:a critical review of the evidence

    Get PDF
    Auditory Training (AT) describes a regimen of varied listening exercises designed to improve an individual’s ability to perceive speech. The theory of AT is based on brain plasticity (the capacity of neurones in the central auditory system to alter their structure and function) in response to auditory stimulation. The practice of repeatedly listening to the speech sounds included in AT exercises is believed to drive the development of more efficient neuronal pathways, thereby improving auditory processing and speech discrimination. This critical review aims to assess whether auditory training can improve speech discrimination in adults with mild-moderate SNHL. The majority of patients attending Audiology services are adults with presbyacusis and it is therefore important to evaluate evidence of any treatment effect of AT in aural rehabilitation. Ideally this review would seek to appraise evidence of neurophysiological effects of AT so as to verify whether it does induce change in the CAS. However, due to the absence of such studies on this particular patient group, the outcome measure of speech discrimination, as a behavioural indicator of treatment effect is used instead. A review of available research was used to inform an argument for or against using AT in rehabilitative clinical practice. Six studies were identified and although the preliminary evidence indicates an improvement gained from a range of AT paradigms, the treatment effect size was modest and there remains a lack of large-sample RCTs. Future investigation into the efficacy of AT needs to employ neurophysiological studies using auditory evoked potentials in hearing-impaired adults in order to explore effects of AT on the CAS
    • …
    corecore