229 research outputs found

    On uncoordinated wireless ad-hoc networks:data dissemination over WIFI and cross-layer optimization for ultra wide band impulse radio

    Get PDF
    Emerging pervasive wireless networks, pocket switched networks, Internet of things, vehicular networks and even sensor networks present very challenging communication circumstances. They might involve up to several hundreds of wireless devices with mobility and intermittent connectivity. Centralized coordination in such networks is practically unfeasible. We deal with these challenge using two potential technologies: WIFI and Ultra Wide Band (UWB) Impulse Radio (IR) for medium and short communication range, respectively. Our main goal is to improve the communication performance and to make these networks sustainable in the absence of a centralized coordination. With WIFI, the goal is to design an environment-oblivious data dissemination protocol that holds in highly dynamic unpredictable wireless ad-hoc networks. To this end, we propose a complete design for a scope limited, multi-hop broadcast middleware, which is adapted to the variability of the ad-hoc environment and works in unlimited ad-hoc networks such as a crowd in a city, or car passengers in a busy highway system. We address practical problems posed by: the impossibility of setting the TTL correctly at all times, the poor performance of multiple access protocols in broadcast mode, flow control when there is no acknowledgment and scheduling of multiple concurrent broadcasts. Our design, called "Self Limiting Epidemic Forwarding" (SLEF), automatically adapts its behavior from single hop MAC layer broadcast to epidemic forwarding when the environment changes from being extremely dense to sparse, sporadically connected. A main feature of SLEF is a non-classical manipulation of the TTL field, which combines the usual decrement-when-sending to many very small decrements when receiving. Then, we identify vulnerabilities that are specific to epidemic forwarding. We address broadcast applications over wireless ad-hoc networks. Epidemic forwarding employs several mechanisms such as forwarding factor control and spread control, and each of them can be implemented using alternative methods. Thus, the existence of vulnerabilities is highly dependent on the methods used. We examine the links between them. We classify vulnerabilities into two categories: malicious and rational. We examine the effect of the attacks according to the number of attackers and the different network settings such as density, mobility and congestion. We show that malicious attacks are hard to achieve and their effects are scenario-dependent. In contrast, rational attackers always obtain a significant benefit. The evaluation is carried out using detailed realistic simulations over networks with up to 1000 nodes. We consider static scenarios, as well as vehicular networks. In order to validate our simulation results, we build a solid and widely adaptable experimental testbed for wireless networks. It is composed of 57 mobile wireless nodes equipped with WIFI interface. The adopted platform is OpenWrt, a Linux-like firmware, which makes the testbed robust and easily configurable. With UWB IR, the main problem we deal with is the presence of uncontrolled interference. Indeed, similarly to Code Division Multiple Access (CDMA) systems, signal acquisition with UWB IR signaling requires power control in the presence of interferers, which is very expensive in an uncoordinated system. We solve this problem through a cross-layer optimization: We propose a new signal acquisition method that is independent of the received signal power and we adapt the MAC layer accordingly. Our signal acquisition method is designed to solve the IUI (Inter-User Interference) that occurs in some ad-hoc networks where concurrent transmissions are allowed with heterogeneous power levels. In such scenarios, the conventional detection method, which is based on correlating the received IR signal with a Template Pulse Train (TPT), does not always perform well. The complexity of our proposal is similar to that of the conventional method. We evaluate its performance with the Line Of Sight (LOS) and the Non-LOS (NLOS) office indoor-channel models proposed by the IEEE P802.15.4a study group and find that the improvement is significant. We also investigate the particular case where the concurrent transmissions have the same time-hopping code, and we show that it does not result in collision, such scenarios appear in ad-hoc networks that employ a common code for control or broadcast purposes. At the MAC level, we focus only on one component of a MAC layer, which is the sleeping mode that could be added to any MAC layer proposal adequate to UWB IR. We are motivated by the low power consumption constraint required by the potential applications. We identify the design elements that should be taken into account for an optimal design for a sleeping protocol for UWB-IR such as the possibility of transmitting concurrently without collision and the power consumption model of the hardware behind which is completely different than with the narrow-band signaling. Then, we design two sleeping protocols for centralized and decentralized ad-hoc networks, respectively. We evaluate their performance analytically with the adopted metric being the average life-time of the wireless nodes

    MAC layer functions for SLEF

    Get PDF
    We develop three functions around the MAC layer: (1) Pseudo broadcast is a technique used to improve throughput of broadcast transmissions in case of congested networks. The mechanism consists in sending a packet in unicast to a station using RTS/CTS. Other stations will receive the packet by capturing all the frames that are transmitted on the network, even if they are not directed to them. (2) The injection rate of packets in the MAC layer has to be controlled. The application must not be allowed to deliver to the MAC layer more packets than the number that can be sent by the network adapter. It is also necessary to know the nominal rate of the network. (3) An indication of activity on the network has to be provided. This function has to detect the activity of other SLEF stations in the neighborhood. The address of the last transmitting station and the time of transmission have to be provided. The implementation is carried out using JAVA and native native code and it is portable across all operating systems and wireless cards

    Effects of the optimized resonator dimensions on the performance of the standing-wave thermoacoustic refrigerator

    Get PDF
    Thermoacoustic refrigerator is an alternative cooling system, which is environmentally safe due to the absence of any refrigerants. The resonator tube of the system is of great importance; its design and dimensions influence the design and performance of the entire refrigerator. The central component of the resonator is the stack. So this work describes the design of the stack and the resonator along with the influence of its dimensions on the performance of the standing-wave thermoacoustic refrigerator. The resonator consists of two tubes, one larger than the other, characterized by the diameter ratio of the small over the larger diameter. A Lagrange multiplier method is used as a technique to optimize the coefficient of performance (COP) of the system. The computational analyses show that the resonator small diameter tube dissipates minimum acoustic power at a diameter ratio of 0.46, which is about 17 percent (at least) less than the published values. Moreover, the results show that the resonator length increases gradually with the increase of the mean design temperature. The increase of the resonator length leads to increase of the total acoustic power dissipated by the resonator, which reduces the COP of the standing-wave thermoacoustic refrigerator

    Sequence stratigraphic evolution of The post-rift MEGASEQUENCE in The northern part of The Nile Delta basin, Egypt

    Get PDF
    The stratigraphic succession of the subsurface Pliocene-Quaternary post-rift megasequence in the north-central part of the Nile Delta includes the rock units; Kafr El-Sheikh Formation (Early-Middle Pliocene), El- Wastani Formation (Late Pliocene), Mit-Ghamr and Bilqas formations (Quaternary). These rock units were analyzed according to the sequence stratigraphic principles to construct their stratigraphic architecture and discuss the depositional events influencing their evolution. Accordingly, seven 3rd order depositional sequences were encountered, of which six 3rd order seismic depositional sequences (sequences 1–6) are found in the Early–Middle Pliocene Kafr El-Sheikh Formation, whereas sequence-7 includes the Quaternary rock units. Sequences 1 and 7 were further subdivided, on the basis of high-resolution sequence stratigraphy into 8 and 11 4th order subsequences respectively. The results of the sequence stratigraphic analyses suggested that the depositional evolution of the examined Pliocene-Quaternary megasequence represents a complete prograding depositional phase during the Nile Delta history. The lower part of Kafr El-Sheikh Formation (sequences 1, 2, 3 and 4) was deposited as a thick outer marine shelf succession over which the younger rock units were deposited. However, the depositional sequences 5 & 6 of Kafr El-Sheikh Formation and the lower parts of El-Wastani Formations may indicate a deposition within active prograding prodelta sub-aqueous deltaic-subenvironments. The upper parts of El-Wastani Formation were deposited as a constructive delta-front pushing its way northward. The Pleistocene Mit-Ghamr Formation was evolved as a direct result of a huge fluvial input, organized as coalescing laterally extensive sand-rich bars. These were laid-down by active fluvial distributary streams that dominated the delta plain as the final phases of the present deltaic subaqueous environments

    Synchronizing Method for Impulse Radio Network

    Get PDF
    In IR (Impulse Radio) network, the conventional synchronization (also called signal acquisition) method becomes inefficient and results in a certain failure of synchronization when concurrent transmissions are allowed without controlling their powers. The present invention aims to solve this problem by introducing a novel synchronization method. Moreover, the claimed method can replace the conventional one in all IR networks

    TMS excitability study in essential tremor: Absence of gabaergic changes assessed by silent period recordings

    Get PDF
    BACKGROUND: Essential tremor (ET) is thought to emerge from activity in a distributed cerebello-thalamo-cortical network. It has been proposed that the network goes into oscillation because of abnormal GABAergic inhibitory transmission. OBJECTIVE: To test this idea by investigating GABAergic circuitry in motor cortex using transcranial magnetic stimulation (TMS). METHODS: Motor cortex excitability was examined using TMS in 21 patients with essential tremor and in 20 control subjects. Resting and active motor threshold (RMT, AMT) and input-output curves examined corticospinal excitability. Contralateral silent period (cSP) at a different range of stimulation intensities, and the ipsilateral silent period (iSP) using a stimulus intensity of 150% RMT were used as measures of GABAergic function. RESULTS: RMT and AMT were significantly lower in patients than controls and patients had a steeper I/O curve. However, there were no significant differences in either cSP at different intensities or in iSP. CONCLUSION: We found no evidence in favour of the GABA hypothesis in ET

    A Robust Signal Detection Method for Ultra Wide Band (UWB) Networks with Uncontrolled Interference

    Get PDF
    We propose a novel detection method for non-coherent synchronization (signal acquisition) in multi-user UWB impulse radio (IR) networks. It is designed to solve the IUI (Inter-User Interference) that occurs in some ad-hoc networks where concurrent transmissions are allowed with heterogeneous power levels. In such scenarios, the conventional detection method, which is based on correlating the received IR signal with a Template Pulse Train (TPT), does not always perform well. The complexity of our proposal is similar to that of the conventional method. We evaluate its performance with the Line Of Sight (LOS) and the Non LOS (NLOS) office indoor channel models proposed by the IEEE P802.15.4a study group and find that the improvement is significant. We also investigate the particular case where the concurrent transmissions have the same time-hopping code, and we show that it does not result in collision, such scenarios appear in ad-hoc networks that employ common code for control or broadcast purposes
    • …
    corecore