347 research outputs found

    Blavigator: a navigation aid for blind persons

    Get PDF
    Blavigator (blind navigator) is a vision aid for blind and visuaIIy impaired persons. It supports local navigation by detecting waIkable paths in the immediate vicinity of the user. It guides the user for centering on the path

    Potassium deficiency decreases the capacity for urea synthesis and markedly increases ammonia in rats

    Get PDF
    Our study provides novel findings of experimental hypokalemia reducing urea cycle functionality and thereby severely increasing plasma ammonia. This is pathophysiologically interesting because plasma ammonia increases during hypokalemia by a hitherto unknown mechanism, which may be particular important in relation to the unexplained link between hypokalemia and hepatic encephalopathy. Potassium deficiency decreases gene expression, protein synthesis, and growth. The urea cycle maintains body nitrogen homeostasis including removal of toxic ammonia. Hyperammonemia is an obligatory trait of liver failure, increasing the risk for hepatic encephalopathy, and hypokalemia is reported to increase ammonia. We aimed to clarify the effects of experimental hypokalemia on the in vivo capacity of the urea cycle, on the genes of the enzymes involved, and on ammonia concentrations. Female Wistar rats were fed a potassium-free diet for 13 days. Half of the rats were then potassium repleted. Both groups were compared with pair- and free-fed controls. The following were measured: in vivo capacity of urea-nitrogen synthesis (CUNS); gene expression (mRNA) of urea cycle enzymes; plasma potassium, sodium, and ammonia; intracellular potassium, sodium, and magnesium in liver, kidney, and muscle tissues; and liver sodium/potassium pumps. Liver histology was assessed. The diet induced hypokalemia of 1.9 ± 0.4 mmol/L. Compared with pair-fed controls, the in vivo CUNS was reduced by 34% (P < 0.01), gene expression of argininosuccinate synthetase 1 (ASS1) was decreased by 33% (P < 0.05), and plasma ammonia concentrations were eightfold elevated (P < 0.001). Kidney and muscle tissue potassium contents were markedly decreased but unchanged in liver tissue. Protein expressions of liver sodium/potassium pumps were unchanged. Repletion of potassium reverted all the changes. Hypokalemia decreased the capacity for urea synthesis via gene effects. The intervention led to marked hyperammonemia, quantitatively explainable by the compromised urea cycle. Our findings motivate clinical studies of patients with liver disease

    Constant regulation for stable CD8 T-cell functional avidity and its possible implications for cancer immunotherapy.

    Get PDF
    The functional avidity (FA) of cytotoxic CD8 T cells impacts strongly on their functional capabilities and correlates with protection from infection and cancer. FA depends on TCR affinity, downstream signaling strength, and TCR affinity-independent parameters of the immune synapse, such as costimulatory and inhibitory receptors. The functional impact of coreceptors on FA remains to be fully elucidated. Despite its importance, FA is infrequently assessed and incompletely understood. There is currently no consensus as to whether FA can be enhanced by optimized vaccine dose or boosting schedule. Recent findings suggest that FA is remarkably stable in vivo, possibly due to continued signaling modulation of critical receptors in the immune synapse. In this review, we provide an overview of the current knowledge and hypothesize that in vivo, codominant T cells constantly "equalize" their FA for similar function. We present a new model of constant FA regulation, and discuss practical implications for T-cell-based cancer immunotherapy

    Quantifying the Effects of Prosody Modulation on User Engagement and Satisfaction in Conversational Systems

    Full text link
    As voice-based assistants such as Alexa, Siri, and Google Assistant become ubiquitous, users increasingly expect to maintain natural and informative conversations with such systems. However, for an open-domain conversational system to be coherent and engaging, it must be able to maintain the user's interest for extended periods, without sounding boring or annoying. In this paper, we investigate one natural approach to this problem, of modulating response prosody, i.e., changing the pitch and cadence of the response to indicate delight, sadness or other common emotions, as well as using pre-recorded interjections. Intuitively, this approach should improve the naturalness of the conversation, but attempts to quantify the effects of prosodic modulation on user satisfaction and engagement remain challenging. To accomplish this, we report results obtained from a large-scale empirical study that measures the effects of prosodic modulation on user behavior and engagement across multiple conversation domains, both immediately after each turn, and at the overall conversation level. Our results indicate that the prosody modulation significantly increases both immediate and overall user satisfaction. However, since the effects vary across different domains, we verify that prosody modulations do not substitute for coherent, informative content of the responses. Together, our results provide useful tools and insights for improving the naturalness of responses in conversational systems.Comment: Published in CHIIR 2020, 4 page

    Urea cycle dysregulation in non-alcoholic fatty liver disease

    Get PDF
    Background: In non-alcoholic steatohepatitis (NASH), function of urea cycle enzymes (UCEs) may be affected and result in hyperammonemia with risk of disease progression. We aimed to determine whether expression and function of UCEs are altered in a NASH animal model and in non-alcoholic fatty liver disease (NAFLD) patients and whether this is reversible. / Methods: Rats were fed a high-fat, high-cholesterol diet for 10 months to induce NASH and then changed to normal chow to recover. In humans, we obtained liver biopsies from 20 patients with steatosis and 15 NASH patients. Primary rat hepatocytes were isolated and cultured with free fatty acids. We measured the gene and protein expression, the activity of ornithine transcarbamylase (OTC) and ammonia concentrations. Moreover, we assessed the promoter methylation status of OTC and carbamoyl phosphate synthetase (CPS1) in rats, humans and in steatotic hepatocytes. / Results: In NASH animals, gene and protein expression of OTC and CPS1 and activity of OTC were reversibly reduced and hypermethylation of OTC promotor genes was observed. Also in NAFLD patients, OTC enzyme concentration and activity were reduced and ammonia concentrations were increased and more so in NASH. Furthermore, OTC and CPS1 promoter regions were hypermethylated. In primary hepatocytes induction of steatosis was associated with OTC promoter hypermethylation, reduction in the gene expression of OTC and CPS1 and an increase in ammonia concentration in the supernatant. / Conclusion: NASH is associated with a reduction in gene and protein expression, and activity of UCEs resulting in hyperammonemia, possibly through hypermethylation of UCE genes and impairment of urea synthesis. Our investigations describe for the first time a link between NASH, function of UCEs and hyperammonemia providing a novel therapeutic target. / Lay summary: In patients with fatty liver disease, the enzymes that convert nitrogen waste into urea may be affected leading to the accumulation of the toxic substance, ammonia. This accumulation of ammonia can lead to development of scar tissue and risk of progression of disease. In this study, we show that fat accumulation in the liver produces a reversible reduction in the function of these enzymes that are involved in detoxification of ammonia. These data provide potential new targets for therapy of fatty liver disease

    MAGE-A protein and MAGE-A10 gene expressions in liver metastasis in patients with stomach cancer

    Get PDF
    Tumour samples from 71 patients with stomach cancer, 41 patients with liver metastasis (group A) and 15 patients each in stages II–IV (group B) and stage I (group C) without liver metastasis were analysed. MAGE-A protein expression was evaluated by immunohistochemistry using a 6C1 monoclonal antibody and MAGE-A10 mRNA expression was detected by highly sensitive in situ hybridisation using a cRNA probe. Expressions of MAGE-A protein and MAGE-A10 mRNA in group A were detected in 65.9 and 80.5%, respectively. Both protein and gene showed significantly higher expression in group A than those in groups B (6.7, 26.7%) and C (0, 0%) (P=0.0003, P=<0.0001, respectively). MAGE-A10 mRNA expression in liver metastasis was found in eight (88.9%) out of nine patients. The concordant rate between MAGE-A family protein expression and MAGE-A10 mRNA expression in the primary sites was 81.7% (P<0.0001). MAGE-A10 gene expression was associated with reduced survival duration. The results of this study suggest that MAGE-A10 is a possible target in active immunotherapy for advanced stomach cancer

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Translocation detection in lymphoma diagnosis by split-signal FISH: a standardised approach

    Get PDF
    Lymphomas originating from the lymphatic system comprise about 30 entities classified according to the World Health Organization (WHO). The histopathological diagnosis is generally considered difficult and prone to mistakes. Since non-random chromosomal translocations are specifically involved in different lymphoma entities, their detection will be increasingly important. Hence, a split-signal fluorescence in situ hybridisation (FISH) procedure would be helpful in discriminating the most difficult classifications. The Euro-FISH programme, a concerted action of nine European laboratories, has validated a robust, standardised protocol to improve the diagnostic approach on lymphoma entities. Therefore, 16 fluorescent probes and 10 WHO entities, supplemented with reactive cases, were selected. The results of the Euro-FISH programme show that all probes were correctly cytogenetically located, that the standardised protocol is robust, resulting in reliable results in approximately 90% of cases, and that the procedure could be implemented in every laboratory, bringing the relatively easy interpretation of split-signal probes within the reach of many pathology laboratories

    Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps

    Get PDF
    Among the numerous environmental factors affecting plant communities in alpine ecosystems, the influence of geomorphic processes and landforms has been minimally investigated. Subjected to persistent climate warming, it is vital to understand how these factors affect vegetation properties. Here, we studied 72 vegetation plots across three sites located in the Western Swiss Alps, characterized by high geomorphological variability and plant diversity. For each plot, vascular plant species were inventoried and ground surface temperature, soil moisture, topographic variables, earth surface processes (ESPs) and landform morphodynamics were assessed. The relationships between plant communities and environmental variables were analysed using non-metric multidimensional scaling (NMDS) and multivariate regression techniques (generalized linear model, GLM, and generalized additive model, GAM). Landform morphodynamics, growing degree days (sum of degree days above 5°C) and mean ground surface temperature were the most important explanatory variables of plant community composition. Furthermore, the regression models for species cover and species richness were significantly improved by adding a morphodynamics variable. This study provides complementary support that landform morphodynamics is a key factor, combined with growing degree days, to explain alpine plant distribution and community composition
    corecore