1,304 research outputs found

    Developments of the pinned photodiode terahertz rectifier

    Get PDF
    This paper presents we presents a development of the structure of the pinned photodiode terahertz rectifier, in which the metal whisker of the antenna is separated from the semiconductor by a silane oxide layer, in order to reduce the surface defectiveness. The rectifies is the basic component of an image detection system based on the structure of actual CMOS image detectors. The structure combines a nano-antenna, fabricated on the top of a standard image sensor, the rectifier, and the readout electronics. The rectifier device proposed has vertical extension of some tenths of nanometers, can be created at the foot of the nano-whisker at the end of the terahertz antenna, above the storage well

    Circular quiver gauge theories, isomonodromic deformations and WN fermions on the torus

    Get PDF
    We study the relation between class S theories on punctured tori and isomonodromic deformations of flat SL(N) connections on the two-dimensional torus with punctures. Turning on the self-dual Ω -background corresponds to a deautonomization of the Seiberg–Witten integrable system which implies a specific time dependence in its Hamiltonians. We show that the corresponding τ-function is proportional to the dual gauge theory partition function, the proportionality factor being a nontrivial function of the solution of the deautonomized Seiberg–Witten integrable system. This is obtained by mapping the isomonodromic deformation problem to WN free fermion correlators on the torus

    Editorial: Fibrosis and inflammation in tissue pathophysiology

    Get PDF
    In adult mammals, tissue damage activates a wound healing response with acute inflammation followed by either complete repair (for low-grade damage or in highly regenerative tissues, such as the liver) or replacement fibrosis (for extensive damage or in poorly regenerative tissues, such as the myocardium). Persistent damage and repeated insults sustain continuous activation of repair pathways leading to chronic inflammation, progressive tissue fibrosis and sclerosis. Despite the evolutionary advantage conferred by scarring as a rapid repair mechanism, chronic fibrosis leads to tissue adverse remodeling and impaired function. Persistent low-level inflammation and fibrosis are observed in many pathological conditions (e.g. hypertension, obesity, diabetes, genetic diseases), and lead to further complications including atherosclerosis and ischemic events, organ failure, autoimmune diseases, cancer, aging, and reduced resilience to infectious diseases. Pathological fibrosis plays a major role in a wide range of diseases, accounting for an increasingly large fraction of mortality cases worldwide. While recent advances have unveiled many environmental and genetic causes of fibrotic disorders, a better understanding of both ubiquitous and tissue-specific regulatory pathways and cellular dynamics could help to design new targeted therapies, and to identify the etiology of idiopathic diseases. Within this Research Topic, we invite submission of articles (reviews, original research, or methodology articles) on the pathophysiological role of fibrosis and inflammation in different tissues. Areas to be covered include, but are not limited to: - genetic and environmental causes of persistent low-level inflammation and fibrosis (e.g. autoimmunity, hypertension, obesity, diabetes, genetic diseases, latent infections); - comorbidities including systemic sclerosis, neurological disorders, organ failure (heart, skeletal muscle, kidney, liver, lungs), cancer, and reduced resilience to infectious diseases; - in vivo (animal models) and in vitro (organoids, tissue culture) modelling of fibrotic diseases for the discovery of novel therapeutic targets and potential tissue-specific treatments; - vascular responses to inflammation and inflammation of vascular tissues; - system biology approaches to identify molecular and cellular networks leading to chronic inflammation and fibrosis

    The effect of the displacement damage on the Charge Collection Efficiency in Silicon Drift Detectors for the LOFT satellite

    Get PDF
    The technology of Silicon Drift Detectors (SDDs) has been selected for the two instruments aboard the Large Observatory For X-ray Timing (LOFT) space mission. LOFT underwent a three year long assessment phase as candidate for the M3 launch opportunity within the "Cosmic Vision 2015 -- 2025" long-term science plan of the European Space Agency. During the LOFT assessment phase, we studied the displacement damage produced in the SDDs by the protons trapped in the Earth's magnetosphere. In a previous paper we discussed the effects of the Non Ionising Energy Losses from protons on the SDD leakage current. In this paper we report the measurement of the variation of Charge Collection Efficiency produced by displacement damage caused by protons and the comparison with the expected damage in orbit.Comment: 17 pages, 7 figures. Accepted for publication by Journal of Instrumentatio

    Anthropogenic modifications to the drainage network of Rome (Italy). The case study of the Aqua Mariana

    Get PDF
    Rome is characterized by millennia of urbanization. Long lasting geomorphological investigations have allowed the geomorphological description of the city centre and the valorisation of its geomorphological heritage. In this paper the spatial change of the hydrographic network in historical times is illustrated, with some examples showing how deep has been, and still it is, the link between the historical-cultural development and the natural geomorphological and hydrological characteristics of the Roman territory. In particular, the most relevant human interventions on the drainage network, in the southern area of the city centre, have been investigated. Before the land-use modifications of Roman-age, this area was drained by the most important left tributary of the Tiber River within the city walls, the Nodicus River, more recently known as Aqua Mariana. This stream has undergone many anthropogenic modifications and diversions during the centuries, and its original path is known only downstream of the San Giovanni Basilica. According to geomorphological, archaeological and geological evidences, it is possible to hypothesize that the dimension of the pre-urbanization drainage basin, as known and reconstructed in the available literature, should have been until now underestimated

    From Kepler’s conjecture and fcc lattice to modelling of crowding in living matter

    Get PDF
    Up to now, sphere packing has been investigated without any reference to living matter. This study focuses on the void space (VS) of sphere packing to mimic the extracellular spaces of living tissues. It was inspired by the importance of the extracellular matrix, the vehicle of micro and macromolecules involved in cell metabolism, intercellular communication and drug delivery. The analysis of sphere packing evidenced that in uniform random packing VS is about 1.9 times greater than in the face centered cubic (fcc) lattice (thus being very close to the 1.9 volume ratio of the cube to the sphere). This datum is a good reference for cell packing in vivo. The disproportionate increase of VS per sphere in loose packing in vitro is analyzed having in mind the variability in volume and composition of the interstitial spaces in vivo and cell trafficking. Arrangements of lymphocytes mimicking a two-dimensional hexagonal pattern and dense packing of disks generated by numerical procedures, are described in 7 ÎĽm-thick haematoxylin and eosin-stained histological slices from a human lymph node. In narrow tubes simulating roundish cells arranged in limited compartments of the interstice, sphere packing is characterized by noticeable increases of VS. The VS of this packing in vitro is compatible with variability in volume and composition of the interstitial spaces and with cell trafficking in vivo. This paper stresses that in mammalian tissues and organs cells can be packed quite more densely than spheres in the fcc lattice. As to pathology, attention is focused: (i) on overcrowding of cell organelles in some diseases, (ii) on shrinking or swelling of high amplitude, whose opposite effects are to concentrate or dilute intracellular structures and crowding of macromolecules, and (iii) on neoplastic tissues

    Interleukin-2 inhalation therapy in renal cell cancer: a case report and review of the literature

    Get PDF
    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. One third of RCC presents metastatic disease at the time of diagnosis, usually leading to a fatal outcome. Small response rates were seen with most cytotoxic agents including gemcitabine and vinorelbine, whereas systemic therapy with high doses of interleukin 2 (IL-2) has been shown to provide durable complete remissions. However, in consideration of its severe toxicity, IL-2 immunotherapy is restricted to selected patients. Aerosol IL-2 has been introduced as an alternative therapy in cancer patients. However, only very few data are available on its use in patients with pulmonary metastatic RCC. This paper briefly summarizes current clinical experience with the use of inhaled IL-2 therapy, either as a single therapy or in combination with other treatments. In addition, we report on a male patient with pulmonary metastasized RCC who achieved a durable complete response to combined gemcitabine/vinorelbine and interleukin-2 inhalation therapy

    Non-steroidal anti-inflammatory drugs in cancer prevention and therapy

    Get PDF
    Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) can be regarded as an effective approach for cancer chemoprevention, as demonstrated by a bulk of clinical and experimental evidence. However, the clinical use of these drugs as chemopreventive agents is limited by many open questions about the optimal drug, dose, duration of therapy and knowledge about the mechanism(s) by which these drugs act. In particular, the recent data on cardiovascular toxicity of coxibs has posed some limitations on the use of NSAIDs for cancer chemoprevention in the general population. The situation is different in certain genetically susceptible subgroups, such as in individuals with genetic mutations associated with hereditary nonpolyposis colon cancer (HNPCC) or familiar adenomatous polyps (FAP) in whom lifetime risk increases up to 70-90% and in whom the benefit of a chemopreventive drug might justify its use even in the presence of adverse effects
    • …
    corecore