1,888 research outputs found
Atom laser dynamics in a tight-waveguide
We study the transient dynamics that arise during the formation of an atom
laser beam in a tight waveguide. During the time evolution the density profile
develops a series of wiggles which are related to the diffraction in time
phenomenon. The apodization of matter waves, which relies on the use of smooth
aperture functions, allows to suppress such oscillations in a time interval,
after which there is a revival of the diffraction in time. The revival time
scale is directly related to the inverse of the harmonic trap frequency for the
atom reservoir.Comment: 6 pages, 5 figures, to be published in the Proceedings of the 395th
WE-Heraeus Seminar on "Time Dependent Phenomena in Quantum Mechanics ",
organized by T. Kramer and M. Kleber (Blaubeuren, Germany, September 2007
Diffraction in time of a confined particle and its Bohmian paths
Diffraction in time of a particle confined in a box which its walls are
removed suddenly at is studied. The solution of the time-dependent
Schr\"{o}dinger equation is discussed analytically and numerically for various
initial wavefunctions. In each case Bohmian trajectories of the particles are
computed and also the mean arrival time at a given location is studied as a
function of the initial state.Comment: 8 pages, 6 figure
Tachyon warm inflationary universe model in the weak dissipative regime
Warm inflationary universe model in a tachyon field theory is studied in the
weak dissipative regime. We develop our model for an exponential potential and
the dissipation parameter =constant. We describe scalar and
tensor perturbations for this scenario.Comment: 9 pages, accepted by European Physical Journal
diagnostics on the nature of dark energy
The two dominant components of the cosmic budget today, pressureles matter
and dark energy, may or may not be interacting with each other. Currently, both
possibilities appear compatible with observational data. We propose several
criteria based on the history of the Hubble factor that can help discern
whether they are interacting and whether dark energy is phantom or quintessence
in nature.Comment: 22 pages, 7 figures. Accepted for publication in IJMP
Water-stress induced physiological changes in leaves of four container-grown grapevine cultivars (Vitis vinifera L.)
Predawn leaf water potential, night respiration, stomatal conductance, transpiration, and photosynthesis of 4 grapevine cultivars were assessed under irrigated and non-irrigated conditions in July, August and September 1994. Predawn leaf water potential was not significantly related to either stomatal conductance or photosynthesis. Water stress induced distinct stomatal closure in all cultivars at 11 a.m. For a given stomatal conductance rate, photosynthesis of stressed vines was lower than that of nonstressed vines. At similar stomatal conductance rate, photosynthesis was lower in cv. Chardonnay than in any other cultivar. Photosynthesis was the physiological parameter mostly affected by water stress. Dry matter production was linearly related to stomatal conductance, photosynthesis, and the night respiration to photosynthesis ratio for all vines pooled together. In contrast, under stress conditions dry matter production was not related to any physiological parameter.
Matter-wave diffraction in time with a linear potential
Diffraction in time of matter waves incident on a shutter which is removed at
time is studied in the presence of a linear potential. The solution is
also discussed in phase space in terms of the Wigner function. An alternative
configuration relevant to current experiments where particles are released from
a hard wall trap is also analyzed for single-particle states and for a
Tonks-Girardeau gas.Comment: 11 pages, 6 figure
False vacuum decay in a brane world cosmological model
The false vacuum decay in a brane world model is studied in this work. We
investigate the vacuum decay via the Coleman-de Luccia instanton, derive
explicit approximative expressions for the Coleman-de Luccia instanton which is
close to a Hawking-Moss instanton and compare the results with those already
obtained within Einstein's theory of relativity.Comment: minor changes done, references added, version to appear in GR
Adjuvants : an essential component of neisseria vaccines
Adjuvants may be classified into delivery systems and immune potentiator or modulator molecules based on their mechanism of action. Neisseria vaccines containing traditional adjuvants such as aluminium salts have existed for long time, but meningitis caused by Neisseria meningitidis serogroups, particularly serogroup B, continues to be a global health problem. Novel strategies have applied in silico and recombinant technologies to develop "universal" antigens (e.g. proteins, peptides and plasmid DNA) for vaccines, but these antigens have been shown to be poorly immunogenic even when alum adjuvanted, implying a need for better vaccine design. In this work we review the use of natural, detoxified, or synthetic molecules in combination with antigens to activate the innate immune system and to modulate the adaptive immune responses. In the main, antigenic and imune potentiator signals are delivered using nano-, micro-particles, alum, or emulsions. The importance of interaction between adjuvants and antigens to activate and target dendritic cells, the bridge between the innate and adaptive immune systems, will be discussed. In addition, nasal vaccine strategies based on the development of mucosal adjuvants and Neisseria derivatives to eliminate the pathogen at the site of infection provide promising adjuvants effective not only against respiratory pathogens, but also against pathogens responsible for enteric and sexually transmitted diseases
Heatmaps in soccer: event vs tracking datasets
We investigate how similar heatmaps of soccer players are when constructed
from (i) event datasets and (ii) tracking datasets. When using event datasets,
we show that the scale at which the events are grouped strongly influences the
correlation with the tracking heatmaps. Furthermore, there is an optimal scale
at which the correlation between event and tracking heatmaps is the highest.
However, even at the optimal scale, correlations between both approaches are
moderate. Furthermore, there is high heterogeneity in the players' correlation,
ranging from negative values to correlations close to the unity. We show that
the number of events performed by a player does not crucially determine the
level of correlation between both heatmaps. Finally, we analyzed the influence
of the player position, showing that defenders are the players with the highest
correlations while forwards have the lowest.Comment: 6 pages, 5 figure
- …