1,232 research outputs found
Large-scale Oscillation of Structure-Related DNA Sequence Features in Human Chromosome 21
Human chromosome 21 is the only chromosome in human genome that exhibits
oscillation of (G+C)-content of cycle length of hundreds kilobases (500 kb near
the right telomere). We aim at establishing the existence of similar
periodicity in structure-related sequence features in order to relate this
(G+C)% oscillation to other biological phenomena. The following quantities are
shown to oscillate with the same 500kb periodicity in human chromosome 21:
binding energy calculated by two sets of dinucleotide-based thermodynamic
parameters, AA/TT and AAA/TTT bi-/tri-nucleotide density, 5'-TA-3' dinucleotide
density, and signal for 10/11-base periodicity of AA/TT or AAA/TTT. These
intrinsic quantities are related to structural features of the double helix of
DNA molecules, such as base-pair binding, untwisting/unwinding, stiffness, and
a putative tendency for nucleosome formation.Comment: submitted to Physical Review
Learning about compact binary merger: the interplay between numerical relativity and gravitational-wave astronomy
Activities in data analysis and numerical simulation of gravitational waves
have to date largely proceeded independently. In this work we study how
waveforms obtained from numerical simulations could be effectively used within
the data analysis effort to search for gravitational waves from black hole
binaries. We propose measures to quantify the accuracy of numerical waveforms
for the purpose of data analysis and study how sensitive the analysis is to
errors in the waveforms. We estimate that ~100 templates (and ~10 simulations
with different mass ratios) are needed to detect waves from non-spinning binary
black holes with total masses in the range 100 Msun < M < 400 Msun using
initial LIGO. Of course, many more simulation runs will be needed to confirm
that the correct physics is captured in the numerical evolutions. From this
perspective, we also discuss sources of systematic errors in numerical waveform
extraction and provide order of magnitude estimates for the computational cost
of simulations that could be used to estimate the cost of parameter space
surveys. Finally, we discuss what information from near-future numerical
simulations of compact binary systems would be most useful for enhancing the
detectability of such events with contemporary gravitational wave detectors and
emphasize the role of numerical simulations for the interpretation of eventual
gravitational-wave observations.Comment: 19 pages, 12 figure
A microfabricated sensor for thin dielectric layers
We describe a sensor for the measurement of thin dielectric layers capable of
operation in a variety of environments. The sensor is obtained by
microfabricating a capacitor with interleaved aluminum fingers, exposed to the
dielectric to be measured. In particular, the device can measure thin layers of
solid frozen from a liquid or gaseous medium. Sensitivity to single atomic
layers is achievable in many configurations and, by utilizing fast, high
sensitivity capacitance read out in a feedback system onto environmental
parameters, coatings of few layers can be dynamically maintained. We discuss
the design, read out and calibration of several versions of the device
optimized in different ways. We specifically dwell on the case in which
atomically thin solid xenon layers are grown and stabilized, in cryogenic
conditions, from a liquid xenon bath
Characterization of Silicon Photomultipliers for nEXO
Silicon Photomultipliers (SiPMs) are attractive candidates for light
detectors for next generation liquid xenon double-beta decay experiments, like
nEXO. In this paper we discuss the requirements that the SiPMs must satisfy in
order to be suitable for nEXO and similar experiments, describe the two test
setups operated by the nEXO collaboration, and present the results of
characterization of SiPMs from several vendors. In particular, we find that the
photon detection efficiency at the peak of xenon scintillation light emission
(175-178 nm) approaches the nEXO requirements for tested FBK and Hamamatsu
devices. Additionally, the nEXO collaboration performed radioassay of several
grams of bare FBK devices using neutron activation analysis, indicating levels
of 40K, 232Th, and 238U of the order of <0.15, (6.9e10-4 - 1.3e10-2), and <0.11
mBq/kg, respectively.Comment: Version as accepted to Transaction of Nuclear Science. 12 pages, 15
figures (one figure removed following peer review), 8 tables (1 table added
following peer review
Comparisons of binary black hole merger waveforms
This a particularly exciting time for gravitational wave physics.
Ground-based gravitational wave detectors are now operating at a sensitivity
such that gravitational radiation may soon be directly detected, and recently
several groups have independently made significant breakthroughs that have
finally enabled numerical relativists to solve the Einstein field equations for
coalescing black-hole binaries, a key source of gravitational radiation. The
numerical relativity community is now in the position to begin providing
simulated merger waveforms for use by the data analysis community, and it is
therefore very important that we provide ways to validate the results produced
by various numerical approaches. Here, we present a simple comparison of the
waveforms produced by two very different, but equally successful
approaches--the generalized harmonic gauge and the moving puncture methods. We
compare waveforms of equal-mass black hole mergers with minimal or vanishing
spins. The results show exceptional agreement for the final burst of radiation,
with some differences attributable to small spins on the black holes in one
case.Comment: Revtex 4, 5 pages. Published versio
The theory of heating of the quantum ground state of trapped ions
Using a displacement operator formalism, I analyse the depopulation of the
vibrational ground state of trapped ions. Two heating times, one characterizing
short time behaviour, the other long time behaviour are found. The short time
behaviour is analyzed both for single and multiple ions, and a formula for the
relative heating rates of different modes is derived. The possibility of
correction of heating via the quantum Zeno effect, and the exploitation of the
suppression of heating of higher modes to reduce errors in quantum computation
is considered.Comment: 9 pages, 2 figure
Coherent Electron-Phonon Coupling in Tailored Quantum Systems
The coupling between a two-level system and its environment leads to
decoherence. Within the context of coherent manipulation of electronic or
quasiparticle states in nanostructures, it is crucial to understand the sources
of decoherence. Here, we study the effect of electron-phonon coupling in a
graphene and an InAs nanowire double quantum dot. Our measurements reveal
oscillations of the double quantum dot current periodic in energy detuning
between the two levels. These periodic peaks are more pronounced in the
nanowire than in graphene, and disappear when the temperature is increased. We
attribute the oscillations to an interference effect between two alternative
inelastic decay paths involving acoustic phonons present in these materials.
This interpretation predicts the oscillations to wash out when temperature is
increased, as observed experimentally.Comment: 11 pages, 4 figure
A trapped single ion inside a Bose-Einstein condensate
Improved control of the motional and internal quantum states of ultracold
neutral atoms and ions has opened intriguing possibilities for quantum
simulation and quantum computation. Many-body effects have been explored with
hundreds of thousands of quantum-degenerate neutral atoms and coherent
light-matter interfaces have been built. Systems of single or a few trapped
ions have been used to demonstrate universal quantum computing algorithms and
to detect variations of fundamental constants in precision atomic clocks. Until
now, atomic quantum gases and single trapped ions have been treated separately
in experiments. Here we investigate whether they can be advantageously combined
into one hybrid system, by exploring the immersion of a single trapped ion into
a Bose-Einstein condensate of neutral atoms. We demonstrate independent control
over the two components within the hybrid system, study the fundamental
interaction processes and observe sympathetic cooling of the single ion by the
condensate. Our experiment calls for further research into the possibility of
using this technique for the continuous cooling of quantum computers. We also
anticipate that it will lead to explorations of entanglement in hybrid quantum
systems and to fundamental studies of the decoherence of a single, locally
controlled impurity particle coupled to a quantum environment
Exploring Diet, Physical Activity, and Self-Reported Health Status Among Individuals in the Medically Underserved Population
The primary purpose of this study is to determine if certain lifestyle and health behaviors (e.g. smoking, physical activity, diet) in the medically underserved population have any influence on particular health statuses. This study also looked to determine if these health behaviors resulted in particular medical aliments being more prevalent or specific to this community. The secondary purpose of this study aims to gain information that may help health care providers practicing in this community to earlier identify risk factors in patients before a medical problem becomes more severe, difficult and expensive to treat. A survey, adapted from the CDC\u27s Behavioral Risk Factor Surveillance System (BRFSS), was created to allow for the collection of descriptive statistical data. The survey contains questions on the various topics of diet, physical activity, chronic diseases, and self-perception of overall health status. The survey was distributed to 20 older adult participants at Hebni Nutrition, LLC, all from disadvantaged backgrounds. Descriptive statistics were used to analyze the data. Of the 20 surveys collected, about half of the respondents reported consuming close to the recommended fruit and vegetable servings and participating in regular physical activity. Furthermore, the participants reported rates of diabetes and hypertension well above average. This study\u27s results were inconclusive as to whether any specific health behaviors among medically underserved individuals influence the prevalence of chronic diseases in this population; more likely a combination of many factors and overall poorer health habits that persist over a lifetime are contributors to chronic diseases among the medically underserved population
- …
