17 research outputs found

    Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.

    Get PDF
    Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET

    Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with 82Rb PET

    Get PDF
    Purpose. Myocardial blood flow (MBF) quantification with R b 82 positron emission tomography (PET) is gaining clinical adoption, but improvements in precision are desired. This study aims to identify analysis variants producing the most repeatable MBF measures. Methods. 12 volunteers underwent same-day test-retest rest and dipyridamole stress imaging with dynamic R b 82 PET, from which MBF was quantified usin

    Quantification of Myocardial Blood Flow in Absolute Terms Using (82)Rb PET Imaging: The RUBY-10 Study.

    Get PDF
    OBJECTIVES: The purpose of this study was to compare myocardial blood flow (MBF) and myocardial flow reserve (MFR) estimates from rubidium-82 positron emission tomography ((82)Rb PET) data using 10 software packages (SPs) based on 8 tracer kinetic models. BACKGROUND: It is unknown how MBF and MFR values from existing SPs agree for (82)Rb PET. METHODS: Rest and stress (82)Rb PET scans of 48 patients with suspected or known coronary artery disease were analyzed in 10 centers. Each center used 1 of 10 SPs to analyze global and regional MBF using the different kinetic models implemented. Values were considered to agree if they simultaneously had an intraclass correlation coefficient >0.75 and a difference <20% of the median across all programs. RESULTS: The most common model evaluated was the Ottawa Heart Institute 1-tissue compartment model (OHI-1-TCM). MBF values from 7 of 8 SPs implementing this model agreed best. Values from 2 other models (alternative 1-TCM and Axially distributed) also agreed well, with occasional differences. The MBF results from other models (e.g., 2-TCM and retention) were less in agreement with values from OHI-1-TCM. CONCLUSIONS: SPs using the most common kinetic model-OHI-1-TCM-provided consistent results in measuring global and regional MBF values, suggesting that they may be used interchangeably to process data acquired with a common imaging protocol

    Characterization of PET partial volume corrections for variable myocardial wall thicknesses

    No full text

    Clinical comparison of the positron emission tracking (PeTrack) algorithm with the real-time position management system for respiratory gating in cardiac positron emission tomography

    No full text
    Purpose: A data-driven motion tracking system was developed for respiratory gating in positron emission tomography (PET)/computed tomography (CT) studies. The positron emission tracking system (PeTrack) estimates the position of a low-activity fiducial marker placed on the patient during imaging. The aim of this study was to compare the performance of PeTrack against that of the real-time position management (RPM) system as applied to respiratory gating in cardiac PET/CT studies. Methods: The list-mode data of 35 patients that were referred for 82Rb myocardial perfusion studies were retrospectively processed with PeTrack to generate respiratory motion signals and triggers. Fifty acquisitions from the initial cohort, conducted under physiologic rest and stress, were considered for analysis. Respiratory-gated reconstructions were performed using reconstruction software provided by the vendor. The respiratory signals and triggers of the gating systems were compared using quantitative measurements of the respiratory signal correlation, median, and interquartiles range (IQR) of observed respiratory rates and the relative frequencies of respiratory cycle outliers. Quantitative measurements of left-ventricular wall thicknesses and motion due to respiration were also compared. Real-time position management signals were also retrospectively processed using the trigger detection method of PeTrack for a third comparator (“RPMretro”) that allowed direct comparison of the motion tracking quality independently of differences in the trigger detection methods. The comparison of PeTrack to the original RPM data represent a practical comparison of the two systems, whereas that of PeTrack and RPMretro represents an equal comparison of the two. Nongated images were also reconstructed to provide reference left-ventricular wall thicknesses. LV wall thickness and motion measurements were repeated for a subset of cases with motion ≥7 mm as image artifacts were expected to be more severe in these cases. Results: A significant correlation (P < 0.05) was observed between the RPM and PeTrack respiratory signals in 45/50 acquisitions; the mean correlation coefficient was 0.43. Similar results were found between PeTrack and RPMretro. No significant difference was observed between the RPM and PeTrack with respect to median respiratory rates and the percentage of respiratory cycles outliers. Respiratory rate variability (IQR) was significantly higher with PeTrack vs RPM (P = 0.002) and RPMretro (P = 0.04). Both PeTrack and RPM had a significant increase in the percentage of respiratory rate outliers compared to RPMretro (P < 0.001 and P = 0.001, respectively). All methods indicated significant differences in LV thickness compared to nongated images (P < 0.02). LV thickness was si

    A minimal factor overlap method for resolving ambiguity in factor analysis of dynamic cardiac PET

    No full text
    Factor analysis has been pursued as a means to decompose dynamic cardiac PET images into different tissue types based on their unique physiology. Each tissue is represented by a time-activity profile (factor) and an associated spatial distribution (structure). Decomposition is based on non-negative constraints of both the factors and structures; however, additional constraints are required to achieve a unique solution. In this work we present a novel method (minimal factor overlap - MFO) and compare its performance to a previously publishe

    Kinetic model-based factor analysis of dynamic sequences for 82-rubidium cardiac positron emission tomography

    No full text
    Purpose: Factor analysis has been pursued as a means to decompose dynamic cardiac PET images into different tissue types based on their unique temporal signatures to improve quantification of physiological function. In this work, the authors present a novel kinetic model-based (MB) method that includes physiological models of factor relationships within the decomposition process. The physiological accuracy of MB decomposed 82Rb cardiac PET images is evaluated using simulated and experimental data. Precision of myocardial blood flow (MBF) measurement is also evaluated. Methods: A gamma-variate model was used to describe the transport of 82Rb in arterial blood from the right to left ventricle, and a one-compartment model to describe the exchange between blood and myocardium. Simulations of canine and rat heart imaging were performed to evaluate parameter estimation errors. Arterial blood sampling in rats and 11CO blood pool imaging in dogs were used to evaluate factor and structure accuracy. Variable infusion duration studies in canine were used to evaluate MB structure and global MBF reproducibility. All results were compared to a previously published minimal structure overlap (MSO) method. Results: Canine heart simulations demonstrated that MB has lower root-mean-square error (RMSE) than MSO for both factor (0.2% vs 0.5%, p<0.001 MB vs MSO, respectively) and structure (3.0% vs 4.7%, p<0.001) estimations, as with rat heart simulations (factors: 0.2% vs 0.9%, p<0.001 and structures: 3.0% vs 6.7%, p<0.001). MB blood factors compared to arterial blood samples in rats had lower RMSE than MSO (1.6% vs 2.2%, p=0.025). There was no difference in the RMSE of blood structures compared to a 11CO blood pool image in dogs (8.5% vs 8.8%, p=0.23). Myocardial structures were more reproducible with MB than with MSO (RMSE=3.9% vs 6.2%, p<0.001), as were blood structures (RMSE=4.9% vs 5.6%, p=0.006). Finally, MBF values tended to be more reproducible with MB compared to MSO (CV=10% vs 18%, p=0.16). The execution time of MB was, on average, 2.4 times shorter than MSO (p<0.001) due to fewer free parameters. Conclusions: Kinetic model-based factor analysis can be used to provide physiologically accurate decomposition of 82Rb dynamic PET images, and may improve the precision of MBF quantification

    Kernel-Based Reconstruction of C-11-Hydroxyephedrine Cardiac PET Images of the Sympathetic Nervous System

    No full text
    Image reconstruction for positron emission tomography (PET) can be challenging and the resulting image typically has high noise. The kernel-based reconstruction method [1], incorporates prior anatomic information in the reconstruction algorithm to reduce noise while preserving resolution. Prior information is incorporated in the reconstruction algorithm by means of spatial kernels originally used in machine learning. In this paper, the kernel-based method is used to reconstruct PET images of sympathetic innervation in the heart. The resulting images are compared with standard Ordered Subset Expectation Maximization (OSEM) reconstructed images qualitatively and quantitatively using data from 6 human subjects. The kernel-based method demonstrated superior SNR with preserved contrast and accuracy compared to OSEM

    Consistent tracer administration profile improves test–retest repeatability of myocardial blood flow quantification with 82Rb dynamic PET imaging

    No full text
    Objectives: Quantification of myocardial blood flow (MBF) and stress/rest flow reserve is used increasingly to diagnose multi-vessel coronary artery disease and micro-vascular disease with PET imaging. However, variability in the measurements may limit physici
    corecore