37 research outputs found

    Identification of Retinoic Acid in a High Content Screen for Agents that Overcome the Anti-Myogenic Effect of TGF-Beta-1

    Get PDF
    Transforming growth factor beta 1 (TGF-β1) is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome and muscular dystrophy. The goal of our studies was to identify additional agents that overcome the anti-myogenic effect of TGF-β1.A high-content cell-based assay was developed in a 96-well plate format that detects the expression of myosin heavy chain (MHC) in C2C12 cells. The assay was used to quantify the dose-dependent responses of C2C12 cell differentiation to TGF-β1 and to the TGF-β1 Type 1 receptor kinase inhibitor, SB431542. Thirteen agents previously described as promoting C2C12 differentiation in the absence of TGF-β1 were screened in the presence of TGF-β1. Only all-trans retinoic acid and 9-cis retinoic acid allowed a maximal level of C2C12 cell differentiation in the presence of TGF-β1; the angiotensin-converting enzyme inhibitor captopril and 10 nM estrogen provided partial rescue. Vitamin D was a potent inhibitor of retinoic acid-induced myogenesis in the presence of TGF-β1. TGF-β1 inhibits myoblast differentiation through activation of Smad3; however, retinoic acid did not inhibit TGF-β1-induced activation of a Smad3-dependent reporter gene in C2C12 cells.Retinoic acid alleviated the anti-myogenic effect of TGF-β1 by a Smad3-independent mechanism. With regard to the goal of improving muscle regeneration and function in individuals with muscle disease, the identification of retinoic acid is intriguing in that some retinoids are already approved for human therapy. However, retinoids also have well-described adverse effects. The quantitative, high-content assay will be useful to screen for less-toxic retinoids or combinations of agents that promote myoblast differentiation in the presence of TGF-β1

    Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+-ATPase mRNA

    Get PDF
    Sarcoplasmic reticulum Ca2+-ATPase cDNA clones have been isolated from an adult rat heart cDNA library and the nucleotide sequence of the Ca2+-ATPase mRNA determined. The sequence has an open reading frame of 997 codons. It is identical to a cDNA isolated from a rat stomach cDNA library and 90% isologous to the rabbit and human slow/ cardiac cDNAs. Nuclease S1 mapping analysis indicates that this sequence corresponds to the main Ca2+-ATPase mRNA present in heart and in slow skeletal muscle and that it is expressed in various proportions in smooth and non-muscle tissues, together with another isoform which differs from the cardiac form in the sequence of its 3′-end. © 1989.link_to_subscribed_fulltex

    Regulation of myosin heavy chain and actin isogenes expression during cardiac growth

    No full text
    The cardiac ventricular myosin heavy chain phenotype is developmentally and hormonally regulated, but less is known concerning the actin phenotype. In this study, the levels of accumulation of α-skeletal and α-cardiac actin mRNAs were investigated in rat and human ventricles by primer extension assays. In rat, the two iso-mRNAs are present in approximately equal amounts from birth until 15 days of age and the cardiac form is predominant in adult and senescent hearts. Hypothyroid development has no effect, at least during the first two weeks of age. In man, the two isoactins are co-expressed to similar ratios in one control heart and in one failing heart. It therefore appears that myosin heavy chain and actin multigene families are both expressed in a species specific fashion but are independently regulated within a species. Preliminary results from nuclear run-on assays are presented that indicate differences in the level of transcription of the α-actin and β-myosin heavy chain isogenes in the rat heart.link_to_subscribed_fulltex

    Switches in cardiac muscle gene expression as a result of pressure and volume overload

    No full text
    In the mammalian heart, the expression of genes encoding proteins responsible for contraction, relaxation, and endocrine function changes in hypertrophy resulting from hemodynamic overload. Different mechanisms are involved in this mechanogenic transduction, including 1) differential expression of myosin and actin multigene families, which may account for the decreased velocity of contractile element shortening in hypertrophied heart, 2) nonactivation of the sarcoplasmic reticulum Ca2+-ATPase gene, which may explain the increased duration of isometric relaxation, and finally 3) activation in the ventricle of the atrial natriuretic factor gene that is responsible in part for the high plasma levels of this peptide. It is increasingly apparent that these changes are independently regulated, but little is known about the mechanisms underlying this regulation. Preliminary results indicate that it is now possible to analyze the early time course or transcription for each gene after the imposition of hemodynamic overload. This should significantly enhance our understanding of the regulatory mechanisms involved in the phenoconversions of the hemodynamically overloaded heart.link_to_subscribed_fulltex

    Expression of the sarcomeric actin isogenes in the rat heart with development and senescence.

    No full text
    Sarcomeric actin genes, alpha-cardiac and alpha-skeletal, are coexpressed in neonatal rodent hearts and are regulated in response to hormonal and hemodynamic stimuli; however, their precise developmental pattern of expression has not been determined, and it is unknown whether they are coexpressed during senescence. We have, therefore, investigated the accumulation of sarcomeric actin transcripts in rat heart during fetal and postnatal development and with senescence by two different techniques: primer extension analysis with an oligonucleotide common to both sarcomeric actins and RNA hybridization with specific cardiac alpha-actin cRNA probes. We found that at 17-19 days in utero both isogenes are coexpressed and alpha-skeletal actin mRNAs represent 28.0 +/- 0.8% of the sarcomeric actin mRNA total. Skeletal actin mRNAs increase to 40% of the total 1 week after birth (NS, p = 0.15), remain constant for 3 weeks, and decrease to less than 20% of the total in ventricles and atria of 1-month-old rats. The alpha-skeletal actin transcripts further decline to less than 5% of the total at 2 months of age and do not reaccumulate in senescent animals. There was no significant difference between male and female rat ventricles. By comparison with the known accumulations of alpha- and beta-myosin heavy chain mRNAs, our results demonstrate that whatever the developmental stage the kinetics of expression for the sarcomeric myosin and actin multigene families are independent

    Expression of the sarcomeric actin isogenes in the rat heart with development and senescence

    No full text
    Sarcomeric actin genes, α-cardiac and α-skeletal, are coexpressed in neonatal rodent hearts and are regulated in response to hormonal and hemodynamic stimuli; however, their precise developmental pattern of expression has not been determined, and it is unknown whether they are coexpressed during senescence. We have, therefore, investigated the accumulation of sarcomeric actin transcripts in rat heart during fetal and postnatal development and with senescence by two different techniques: primer extension analysis with an oligonucleotide common to both sarcomeric actins and RNA hybridization with specific cardiac α-actin cRNA probes. We found that at 17-19 days in utero both isogenes are coexpressed and α-skeletal actin mRNAs represent 28.0±0.8% of the sarcomeric actin mRNA total. Skeletal actin mRNAs increase to 40% of the total 1 week after birth (NS, p=0.15), remain constant for 3 weeks, and decrease to less than 20% of the total in ventricles and atria of 1-month-old rats. The α-skeletal actin transcripts further decline to less than 5% of the total at 2 months of age and do not reaccumulate in senescent animals. There was no significant difference between male and female rat ventricles. By comparison with the known accumulations of α- and β-myosin heavy chain mRNAs, our results demonstrate that whatever the developmental stage the kinetics of expression for the sarcomeric myosin and actin multigene families are independent.link_to_subscribed_fulltex

    Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts.

    No full text
    Expression of the two sarcomeric actins, alpha-skeletal and alpha-cardiac, is regulated in the rodent heart in response to developmental, hormonal, and hemodynamic stimuli. Little is known in man, except that both isogenes were found to be coexpressed in three adult ventricles. In this report, we investigated the isoactin mRNA composition in ventricles from 21 control patients (4 fetal, 5 juvenile, 12 adult) and from 15 patients undergoing cardiac transplantation (5 idiopathic dilated cardiomyopathies, 5 ischemic myopathies with myocardial infarcts, 5 diverse etiologies) by two different and complementary techniques: RNA dot blot analysis with specific cDNA probes, and primer extensions with an oligonucleotide common to alpha-cardiac and alpha-skeletal actins. In the case of dot blot analysis, quantification of each isoform was performed by using as standards RNA transcripts obtained from cloned human alpha-actin sequences, and the total amount of sarcomeric actin mRNA was evaluated as a function of total poly(A+)RNA. We found that both isogenes are always coexpressed, and that the isoactin pattern changes during development. In utero and in neonatal hearts, alpha-skeletal actin mRNA represents less than or equal to 20% of sarcomeric actins, it increases to 48 +/- 6% during the first decade after birth and becomes the predominant isoform of adult hearts (60.4 +/- 8.5%). The 15 adult failing hearts exhibited the same isoactin pattern as the control ones (62.84 +/- 11.06%), and there was no difference in expression between patients with dilated cardiomyopathy or ischemic heart disease. These observations demonstrate that cardiac development in man, in contrast to rodent heart, is characterized by an up-regulation of the skeletal actin gene, the expression of which does not change in hypertrophied and failing hearts, and suggest that the actin and myosin heavy chain families are independently regulated in human heart
    corecore