2,766 research outputs found

    A Hipparcos census of the nearby OB associations

    Get PDF
    A comprehensive census of the stellar content of the nearby OB associations is presented, based on Hipparcos positions, proper motions, and parallaxes. Moving groups are identified by combining de Bruijne's refurbished convergent point method with the `Spaghetti method' of Hoogerwerf & Aguilar. Monte Carlo simulations are used to estimate the expected number of interloper field stars. Astrometric members are listed for 12 young stellar groups, out to a distance of ~650 pc. These are the 3 subgroups Upper Scorpius, Upper Centaurus Lupus and Lower Centaurus Crux of Sco OB2, as well as Vel OB2, Tr 10, Col 121, Per OB2, alpha Persei (Per OB3), Cas-Tau, Lac OB1, Cep OB2, and a new group designated as Cep OB6. The selection procedure corrects the list of previously known astrometric and photometric B- and A-type members, and identifies many new members, including a significant number of F stars, as well as evolved stars, e.g., the Wolf-Rayet stars gamma^2 Vel (Vel OB2) and EZ CMa (Col 121), and the classical Cepheid delta Cep in Cep OB6. In the nearest associations the later-type members include T Tauri objects and other pre-main sequence stars. Astrometric evidence for moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, Cam OB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive, due to their large distance or unfavorable kinematics. The mean distances of the well-established groups are systematically smaller than previous estimates. The mean motions display a systematic pattern, which is discussed in relation to the Gould Belt. Six of the 12 detected moving groups do not appear in the classical list of nearby OB associations. The number of unbound young stellar groups in the Solar neighbourhood may be significantly larger than thought previously.Comment: 51 pages, 30 PostScript figures, 6 tables in PostScript format, default LaTeX using psfig.sty; accepted for publication in the Astronomical Journal, scheduled for January 1999 issue. Abbreviated abstrac

    OB Associations

    Get PDF
    Since the previous (1990) edition of this meeting enormous progress in the field of OB associations has been made. Data from X-ray satellites have greatly advanced the study of the low-mass stellar content of associations, while astrometric data from the Hipparcos satellite allow for a characterization of the higher-mass content of associations with unprecedented accuracy. We review recent work on the OB associations located within 1.5 kpc from the Sun, discuss the Hipparcos results at length, and point out directions for future research.Comment: To appear in The Physics of Star Formation and Early Stellar Evolution II, eds C.J. Lada & N. Kylafis (Kluwer Academic), 30 pages, 9 EPS-figures, LaTeX using crckapb.sty, epsfig.sty, amssymb.st

    Dark matter in elliptical galaxies

    Get PDF
    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f=f(E,L_z) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.Comment: 15 pages, uuencoded compressed PostScript, includes 3 figure

    Mapping young stellar populations towards Orion with Gaia DR1

    Get PDF
    We use the first data release of the Gaia mission to explore the three dimensional arrangement and the age ordering of the many stellar groups towards the Orion OB association, aiming at a new classification and characterization of the stellar population. We make use of the parallaxes and proper motions provided in the Tycho Gaia Astrometric Solution (TGAS) sub-set of the Gaia catalogue, and of the combination of Gaia and 2MASS photometry. In TGAS we find evidence for the presence of a young population, at a parallax ϖ2.65mas\varpi \sim 2.65 \, \mathrm{mas}, loosely distributed around some known clusters: 25 Ori, ϵ\epsilon Ori and σ\sigma Ori, and NGC 1980 (ι\iota Ori). The low mass counterpart of this population is visible in the color-magnitude diagrams constructed by combining Gaia and 2MASS photometry. We study the density distribution of the young sources in the sky. We find the same groups as in TGAS, and also some other density enhancements that might be related to the recently discovered Orion X group, the Orion dust ring, and to the λ\lambda Ori complex. We estimate the ages of this population and we infer the presence of an age gradient going from 25 Ori (13-15 Myr) to the ONC (1-2 Myr). We confirm this age ordering by repeating the Bayesian fit using the Pan-STARRS1 data. The estimated ages towards the NGC 1980 cluster span a broad range of values. This can either be due to the presence of two populations coming from two different episodes of star formation or to a large spread along the line of sight of the same population. Our results form the first step towards using the Gaia data to unravel the complex star formation history of the Orion region in terms of the different star formation episodes, their duration, and their effects on the surrounding interstellar medium.Comment: 17 pages, 17 figure

    The ESO Spectroscopic facility

    Get PDF
    We present the concept of a novel facility dedicated to massively-multiplexed spectroscopy. The telescope has a very wide field Cassegrain focus optimised for fibre feeding. With a Field of View (FoV) of 2.5 degrees diameter and a 11.4m pupil, it will be the largest etendue telescope. The large focal plane can easily host up to 16.000 fibres. In addition, a gravity invariant focus for the central 10 arc-minutes is available to host a giant integral field unit (IFU). The 3 lenses corrector includes an ADC, and has good performance in the 360-1300 nm wavelength range. The top level science requirements were developed by a dedicated ESO working group, and one of the primary cases is high resolution spectroscopy of GAIA stars and, in general, how our Galaxy formed and evolves. The facility will therefore be equipped with both, high and low resolution spectrographs. We stress the importance of developing the telescope and instrument designs simultaneously. The most relevant R\&D aspect is also briefly discussed.Comment: 6 pages 4 figures , presented at IAU Symposium 334 "rediscovering our galaxy
    corecore