88 research outputs found

    Care for children with atopic dermatitis in the Netherlands during the COVID-19 pandemic:Lessons from the first wave and implications for the future

    Get PDF
    The first wave of the coronavirus disease 2019 (COVID-19) pandemic had an enormous impact on health-care services, including on care provision for children with atopic dermatitis (AD). We investigated the impact of COVID-19 on the care for children with moderate to severe AD at our tertiary outpatient clinic and examined satisfaction with care. We reviewed outpatient records, comparing total number and types of consultations during the first COVID-19 wave (March until July 2020) with the corresponding months of 2019 and 2018. In addition, we conducted a questionnaire-based study investigating the impact of COVID-19 on clinical and psychological symptoms, and satisfaction with care. A total number of 913 consultations (466 individual children) were conducted during the first COVID-19 wave in 2020, while 698 (391 individual children) and 591 consultations (356 individual children) were conducted in 2019 and 2018. The proportion of remote consultations was higher (56.2%) compared to 14.0% in 2019 and 12.7% in 2018. Worsening of AD was reported by 9.7% of caretakers. Overall satisfaction with provided care was high (8.6; interquartile range [IQR] = 7.3–10.0). Caretakers receiving face-to-face consultation were significantly (p = 0.026) more satisfied (9.0; IQR = 8.0–10.0) than caretakers receiving remote consultation (7.9; IQR = 7.0–9.5). The COVID-19 pandemic had an unprecedented impact on care provision for children with AD, particularly on the number of remote consultations. Overall satisfaction with care was high. The impact of COVID-19 on disease severity remained limited. Remote consultations seem to be a useful tool that can be put into practice during the COVID-19 pandemic

    Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation

    Full text link
    Ab initio molecular dynamics simulation is used to study the structure and electronic properties of the liquid Ga-Se system at the three compositions Ga2_2Se, GaSe and Ga2_2Se3_3, and of the GaSe and Ga2_2Se3_3 crystals. The calculated equilibrium structure of GaSe crystal agrees well with available experimental data. The neutron-weighted liquid structure factors calculated from the simulations are in reasonable agreement with recent neutron diffraction measurements. Simulation results for the partial radial distribution functions show that the liquid structure is closely related to that of the crystals. A close similarity between solid and liquid is also found for the electronic density of states and charge density. The calculated electronic conductivity decreases strongly with increasing Se content, in accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to Phys. Rev. B. corresponding author: [email protected]

    Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium

    Full text link
    We report x-ray reflectivity (XR) and small angle off-specular diffuse scattering (DS) measurements from the surface of liquid Indium close to its melting point of 156156^\circC. From the XR measurements we extract the surface structure factor convolved with fluctuations in the height of the liquid surface. We present a model to describe DS that takes into account the surface structure factor, thermally excited capillary waves and the experimental resolution. The experimentally determined DS follows this model with no adjustable parameters, allowing the surface structure factor to be deconvolved from the thermally excited height fluctuations. The resulting local electron density profile displays exponentially decaying surface induced layering similar to that previously reported for Ga and Hg. We compare the details of the local electron density profiles of liquid In, which is a nearly free electron metal, and liquid Ga, which is considerably more covalent and shows directional bonding in the melt. The oscillatory density profiles have comparable amplitudes in both metals, but surface layering decays over a length scale of 3.5±0.63.5\pm 0.6 \AA for In and 5.5±0.45.5\pm 0.4 \AA for Ga. Upon controlled exposure to oxygen, no oxide monolayer is formed on the liquid In surface, unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.

    First principles simulations of liquid Fe-S under Earth's core conditions

    Full text link
    First principles electronic structure calculations, based upon density functional theory within the generalized gradient approximation and ultra-soft Vanderbilt pseudopotentials, have been used to simulate a liquid alloy of iron and sulfur at Earth's core conditions. We have used a sulfur concentration of 12\approx 12 % wt, in line with the maximum recent estimates of the sulfur abundance in the Earth's outer core. The analysis of the structural, dynamical and electronic structure properties has been used to report on the effect of the sulfur impurities on the behavior of the liquid. Although pure sulfur is known to form chains in the liquid phase, we have not found any tendency towards polymerization in our liquid simulation. Rather, a net S-S repulsion is evident, and we propose an explanation for this effect in terms of the electronic structure. The inspection of the dynamical properties of the system suggests that the sulfur impurities have a negligible effect on the viscosity of Earth's liquid core.Comment: 24 pages (including 8 figures

    The Structure, Dynamics and Electronic Structure of Liquid Ag-Se Alloys Investigated by Ab Initio Simulation

    Full text link
    Ab initio molecular-dynamics simulations have been used to investigate the structure, dynamics and electronic properties of the liquid alloy Ag(1-x)Se(x) at 1350 K and at the three compositions x=0.33, 0.42 and 0.65. The calculations are based on density-functional theory in the local density approximation and on the pseudopotential plane-wave method. The reliability of the simulations is confirmed by detailed comparisons with very recent neutron diffraction results for the partial structure factors and radial distribution functions (RDF) of the stoichiometric liquid Ag2Se. The simulations show a dramatic change of the Se-Se RDF with increasing Se content. This change is due to the formation of Se clusters bound by covalent bonds, the Se-Se bond length being almost the same as in pure c-Se and l-Se. The clusters are predominantly chain-like, but for higher x a large fraction of 3-fold coordinated Se atoms is also found. It is shown that the equilibrium fractions of Se present as isolated atoms and in clusters can be understood on a simple charge-balance model based on an ionic interpretation. The Ag and Se diffusion coefficients both increase with Se content, in spite of the Se clustering. An analysis of the Se-Se bond dynamics reveals surprisingly short bond lifetimes of less than 1 ps. The changes in the density of states with composition arise directly from the formation of Se-Se covalent bonds. Results for the electronic conductivity obtained using the Kubo-Greenwood approximation are in adequate agreement with experiment for l-Ag2Se, but not for the high Se contents. Possible reasons for this are discussed.Comment: 14 pages, Revtex, 14 Postscript figures embedded in the tex

    Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve

    Get PDF
    {\em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant to the Earth's core. The {\em ab initio} free energy is obtained by using thermodynamic integration to calculate the change of free energy on going from a simple reference system to the {\em ab initio} system, with thermal averages computed by {\em ab initio} molecular dynamics simulation. The reference system consists of the inverse-power pair-potential model used in previous work. The liquid-state free energy is combined with the free energy of hexagonal close packed Fe calculated earlier using identical {\em ab initio} techniques to obtain the melting curve and volume and entropy of melting. Comparisons of the calculated melting properties with experimental measurement and with other recent {\em ab initio} predictions are presented. Experiment-theory comparisons are also presented for the pressures at which the solid and liquid Hugoniot curves cross the melting line, and the sound speed and Gr\"{u}neisen parameter along the Hugoniot. Additional comparisons are made with a commonly used equation of state for high-pressure/high-temperature Fe based on experimental data.Comment: 16 pages including 6 figures and 5 table

    Nonquasiparticle states in half-metallic ferromagnets

    Full text link
    Anomalous magnetic and electronic properties of the half-metallic ferromagnets (HMF) have been discussed. The general conception of the HMF electronic structure which take into account the most important correlation effects from electron-magnon interactions, in particular, the spin-polaron effects, is presented. Special attention is paid to the so called non-quasiparticle (NQP) or incoherent states which are present in the gap near the Fermi level and can give considerable contributions to thermodynamic and transport properties. Prospects of experimental observation of the NQP states in core-level spectroscopy is discussed. Special features of transport properties of the HMF which are connected with the absence of one-magnon spin-flip scattering processes are investigated. The temperature and magnetic field dependences of resistivity in various regimes are calculated. It is shown that the NQP states can give a dominate contribution to the temperature dependence of the impurity-induced resistivity and in the tunnel junction conductivity. First principle calculations of the NQP-states for the prototype half-metallic material NiMnSb within the local-density approximation plus dynamical mean field theory (LDA+DMFT) are presented.Comment: 27 pages, 9 figures, Proceedings of Berlin/Wandlitz workshop 2004; Local-Moment Ferromagnets. Unique Properties for Moder Applications, ed. M. Donath, W.Nolting, Springer, Berlin, 200
    corecore