1,745 research outputs found

    Water storage and evaporation as constituents of rainfall interception

    Get PDF
    Intercepted rainfall may be evaporated during or after the rain event. Intercepted rain is generally determined as the difference between rainfall measurements outside and inside the forest. Such measurements are often used to discriminate between water storage and evaporation during rain as well. Two well-accepted methods underestimate water storage by a factor two as compared to direct observations. The underestimation of storage is compensated by an overestimation of evaporation during rain by a factor of three. The direct observations of water storage and evaporation appear to agree with previous direct observations. Thus, it is concluded that these observations are representative Also, our results based on methods using only rainfall measurements inside and outside the forest appear to agree with previous results, This would result in the conclusion that the common methods systematically underestimate water storage and overestimate evaporation during rain. Indeed, the systematic errors can be explained by the neglect of drainage before saturation. Water storage is better simulated assuming an exponential saturation of a larger storage capacity. A smaller evaporation can be simulated using an appropriate resistance to vapour transport. The observations in dense coniferous forest showed water storage to be the dominant process in rainfall interception, but this conclusion should not be generalized to other forests and climates. Direct observations of water storage and evaporation are recommended to build a realistic set of parameters for rainfall interception studies of the main vegetation types. (C) 1998 Elsevier Science B.V. All rights reserved

    Impulsive and risky decision-making in adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD): The need for a developmental perspective

    Get PDF
    Item does not contain fulltextImpulsive and risky decision-making peaks in adolescence, and is consistently associated with the neurodevelopmental disorder Attention-Deficit/Hyperactivity Disorder (ADHD), regardless of age. In this brief review, we demonstrate the similarity of theoretical models explaining impulsive and risky decision-making that originate in two relatively distinct literatures (i.e. on adolescence and on ADHD). We summarize research thus far and conclude that the presence of ADHD during adolescence further exacerbates the tendency that is already present in adolescents to make impulsive and risky decisions. We also conclude that much is still unknown about the developmental trajectories of individuals with ADHD with regard to impulsive and risky decision-making, and we therefore provide several hypotheses that warrant further longitudinal research.7 p

    B Mixing in the Standard Model and Beyond: Lattice QCD

    Full text link
    We give a brief overview and progress report on our lattice QCD calculation of neutral B mixing hadronic matrix elements needed for Standard Model and Beyond the Standard Model physics. Reference [1] contains more details and results.Comment: 3 pages, 0 figures, Proceedings of the 19th Particles and Nuclei International Conference (PANIC11), Cambridge, MA, U.S.A., July 201

    Understanding the generation of methanol synthesis and water gas shift activity over copper-based catalysts – A spatially resolved experimental kinetic study using steady and non-steady state operation under CO/CO<sub>2</sub>/H<sub>2</sub> feeds

    Get PDF
    AbstractUnderstanding the mechanism and generation of activity for methanol synthesis and the water gas shift reactions over copper-based catalysts remains a significant area of study in heterogeneous catalysis. In this work, steady and non-steady state experimental and kinetic modelling methods are presented to demonstrate changes in functionality of a Cu/ZnO/Al2O3 catalyst based on gas composition.Steady-state testing of a Cu/ZnO/Al2O3 catalyst, using experimental spatial discretisation approaches with fixed-bed, integral-operation micro reactors, has generated performance data over a range of PCO/PCO2 ratios (1–10). The data showed a mixture of observations where forward or reverse water gas shift was kinetically favourable, and also where the reaction was significantly limited by thermodynamic equilibrium. A steady state Langmuir–Hinshelwood model based on micro kinetics was most appropriate which includes kinetic descriptions of both directions of the water gas shift reaction. Using this method, the entire dataset could be predicted and an internal consistency within the kinetic model of the key adsorption constants was demonstrated.Non-steady state, ‘reactor start-up’, testing of a Cu/ZnO/Al2O3 catalyst marked a novel approach to further understanding the functionality of the catalyst. Initial changes in surface carbon and oxygen populations were quantified and linked to subsequent dynamic changes in methanol synthesis and water gas shift activity. Cu/ZnO and Cu/Al2O3 formulations were also evaluated and tested using kinetic models, permitting a structural and compositional comparison with Cu/ZnO/Al2O3
    • 

    corecore