36 research outputs found

    A Comparison Between Alignment and Integral Based Kernels for Vessel Trajectories

    Get PDF
    In this paper we present a comparison between two important types of similarity measures for moving object trajectories for machine learning from vessel movement data. These similarities are compared in the tasks of clustering, classication and outlier detection. The rst similarity type are alignment measures, such as dynamic time warping and edit distance. The second type are based on the integral over time between two trajectories. Following earlier work we dene these measures in the context of kernel methods, which provide state-of-the-art, robust algorithms for the tasks studied. Furthermore, we include the in uence of applying piecewise linear segmentation as pre-processing to the vessel trajectories when computing alignment measures, since this has been shown to give a positive eect in computation time and performance. In our experiments the alignment based measures show the best performance. Regular versions of edit distance give the best performance in clustering and classication, whereas the softmax variant of dynamic time warping works best in outlier detection. Moreover, piecewise linear segmentation has a positive eect on alignments, which seems to be due to the fact salient points in a trajectory, especially important in clustering and outlier detection, are highlighted by the segmentation and have a large in uence in the alignments

    A Linked Data Recommender System Using a Neighborhood-Based Graph Kernel

    Full text link
    Abstract. The ultimate mission of a Recommender System (RS) is to help users discover items they might be interested in. In order to be really useful for the end-user, Content-based (CB) RSs need both to harvest as much information as possible about such items and to effectively han-dle it. The boom of Linked Open Data (LOD) datasets with their huge amount of semantically interrelated data is thus a great opportunity for boosting CB-RSs. In this paper we present a CB-RS that leverages LOD and profits from a neighborhood-based graph kernel. The proposed ker-nel is able to compute semantic item similarities by matching their local neighborhood graphs. Experimental evaluation on the MovieLens dataset shows that the proposed approach outperforms in terms of accuracy and novelty other competitive approaches.

    Kernel methods for vessel trajectories

    Get PDF
    corecore