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Abstract. Electronic notebooks are a common mechanism for scientists
to document and investigate their work. With the advent of tools such as
IPython Notebooks and Knitr, these notebooks allow code and data to be
mixed together and published online. However, these approaches assume
that all work is done in the same notebook environment. In this work,
we look at generating notebook documentation from multi-environment
workflows by using provenance represented in the W3C PROV model.
Specifically, using PROV generated from the Ducktape workflow sys-
tem, we are able to generate IPython notebooks that include results
tables, provenance visualizations as well as references to the software
and datasets used. The notebooks are interactive and editable, so that
the user can explore and analyze the results of the experiment without
re-running the workflow.
We identify specific extensions to PROV necessary for facilitating docu-
mentation generation. To evaluate, we recreate the documentation web-
site for a paper which won the Open Science Award at the ECML/PKDD
2013 machine learning conference. We show that the documentation pro-
duced automatically by our system provides more detail and greater
experimental insight than the original hand-crafted documentation. Our
approach bridges the gap between user friendly notebook documentation
and provenance generated by distributed heterogeneous components.

1 Introduction

Common approaches to computational experimentation1 span a spectrum. On
one side, we find quick, informative experiments intended for fast iteration. These
often involve a single researcher, working on consumer-scale hardware, and can
take as little as a few minutes to run. The aim is to get quick results to inform
further experiments and to build towards larger results in an iterative manner.
The environment that is used for this type of experimentation is usually designed
around quick iteration, and quick inspection of results: MATLAB, R, or a simple



UNIX command line. More recently, this is often done within interactive note-
book environments such as IPython notebooks [1], Knitr [2] or Mathematica
[3].

On the other side of the spectrum we find large-scale experimentation. Well-
prepared, thoroughly designed experiments, intended to run for long amounts
of time on powerful hardware. These experiments are often implemented by
scientific programmers, separate from the researchers designing the experiment.
The chosen environment is often a workflow system [4], providing features like
monitoring of execution, robustness against hardware failure and provenance
tracking. The downside is that each experiment must be carefully prepared, and
purpose-written for the workflow system.

Experimentation usually starts with quick iterations in an interactive system,
and progresses towards the more robust environments as the experiments become
more involved, often at the expense of a re-implementation step as the code is
ported to a more robust environment. At the larger scales, iterations invariably
become slower.

Finally, once results have been produced that are expected to be fit for pub-
lication, the researchers must translate and summarize their approach to allow
for peer-review, reproduction and reuse. The ideal is to publish the datasets,
the code and to provide instructions for reproducing the experiment. In the
small-scale iterative end of the spectrum, this can be very cumbersome: gather-
ing unversioned code, unstructured datasets and documenting all idiosyncratic
steps required to execute it. In the large-scale end, experiments tend to be more
structured, as enforced by the workflow system, but the description of the work-
flow is still tied to the workflow platform. Even a provenance trace, which is
intended to illustrate the source of the results, can be difficult to interpret in its
raw form.

1.1 Main Idea

In this paper, we present a concept for generating notebook documentation for
computational experiments from provenance information. Our approach aims
to retain some of the iteration speed of the small-scale experimentation at the
large-scale end of the spectrum. This documentation generation process is built
on three ideas.

1. After a large-scale experiment has finished, many questions raised by its
output can, theoretically, be answered without re-running the experiment.
Unfortunately, these questions were not the ones which the experiment was
originally designed to answer, so the required data was not collected during
the run. Output representing as much information about the original run
as possible can help to postpone the need for a new run of a (redesigned)
experiment.

1 In this paper, we will call an experiment which can be run entirely in silico (ie. as
a computer program) a computational experiment.



2. While provenance is often seen as a kind of semantically annotated log file—
helping for keeping track of the origins of data, and for finding answers
in the case of unforeseen errors—a complete provenance trace will actually
contain all information about a run of a computational experiment: all data
produced, and the semantic links between them [5]. Any output required
from the experiment, such as tables, graphs and statistical analysis, can be
reconstructed from the provenance trace.

3. A semantically annotated representation of a run of an experiment (such as
a provenance trace) allows us to make intelligent guesses at default modes
of reporting. Thus, we can automatically create reasonable scientific docu-
mentation; reporting not only the results of the experiment, but a human-
readable representation of how the results emerged: which datasets were
used, where they can be found, what code was used, using which versions
and in what configuration. An interactive environment allows the researcher
to tweak this documentation to filter out less relevant information.

In short, we propose to put provenance at the heart of computational exper-
imentation, rather than the sidelines, to combine the best of both worlds. A
large-scale experiment is run on a workflow system, producing mainly a prove-
nance trace. This trace is then loaded into an interactive environment, allowing
a researcher to investigate the questions that inspired the experiment, and any
further questions that these results raise. The researcher can filter, plot and
analyze the results at length, with much greater depth than a non-semantic out-
put, such as a CSV file, could offer. Only when all information produced by the
original run is exhausted, does a new experiment need to be started.

When the time comes for the results to be shared, e.g. via a publication,
the provenance trace provides all required information. All that is needed is a
means to convert it to human readable form. The semantic annotations allow
us to create reasonable default documentation, while anybody interested in the
experiment can load the provenance trace into an interactive system and study
the details.

1.2 Contributions

Interactive notebooks provide both a good format for presenting default docu-
mentation and an interactive environment to study experimental results. The
proof-of-concept implementation presented in this paper uses provenance, in the
W3C PROV-O [6] format, generated by our own workflow system Ducktape2, to
automatically create IPython notebooks. We chose IPython Notebooks as this
system is becoming widely used in data processing. Additionally, they provide
a web-based environment, independent of the underlying language. This means
that future versions of our system could also support R, Julia and other pro-
gramming languages. Our notebooks have result tables and graphs, visualization
of the provenance and links to the software and datasets used. Furthermore, they

2 http://github.com/Data2semantics/ducktape



are interactive and editable, so that the user can explore and analyze the results
of the experiment without re-running the workflow. As a running example use-
case, we take the documentation web-page that won the Open Science Award at
the ECML/PKDD 2013 machine learning conference.

The rest of this paper is structured as follows. In the next section, we discuss
related work. Section 3 describes our proof-of-concept implementation. The final
section contains conclusions and directions for future research.

2 Related Work

A key part of related work is in the area of workflow systems. Often, these
systems provide accessible documentation to the end user through graphical
representations of the workflow. Additionally, they attach detailed provenance
information to those workflows [7]. Our work is different in that we build a
notebook style representation directly from the provenance.

Other existing papers also explore and derive insight from scientific workflow
provenance, with different goals than ours. Work by Biton et al. [8] lets users
define views based on relevant workflow parts that determines how a possibly
large workflow provenance graph can be explored. The high level query languages
for provenance: QLP [9] and OPQL [10], can be used for interactive querying
and visualization. Both views simplify provenance results and allow exploration
of scientific workflow provenance at the graph level.

Close to our work is that of Gibson et al. [11], on creating an interactive
environment where provenance is stored. We see our work as complementary as
one can see the generation of the workflows as similar to generating a notebook.
Deep [12], an executable document environment that generates scientific results
dynamically and interactively, also records the provenance for these results in the
document. In this system, provenance is exposed to users via an interface that
provides them with an alternative way of navigating the executable document.

Burrito[13] is a system that uses a combination of provenance tracking and
user interface constructs for notes to help generate a lab notebook. Our approach
shares their motivation but focuses instead documenting distributed compu-
tational workflows using provenance. Similarly, Scientific Application Middle-
ware [14] combines information coming from both lab notebooks but also dis-
tributed computational components to create documentation for experiments.
Our work adds to this vision by connecting to widely used interactive (compu-
tational) notebook environments.

The idea of using provenance as a singular result of workflow execution shares
some aims with the idea of Research Objects [15]. This is a construct that aims to
replace the traditional paper article as the main unit of scientific publication. A
research object is a package of not just the research results, but also all artifacts
used to create them, such as datasets, code and provenance. Within the research
object, the provenance is seen as a feature to facilitate auditing. In our approach,
we see the provenance as the key entry point: it should not just be used to
audit the experiments, but also to aggregate results and to perform statistical



analyses. Our perspective does not change or replace the use of Research Objects,
but suggests that the provenance could be used as its central component, tying
together the other contents of the package.

3 Proof-of-Concept

The proof-of-concept implementation for our documentation generation approach
consists of three components: a workflow system, workflow provenance and gen-
erating notebooks from provenance. We first introduce a running example that
will illustrate these three components and then we describe the components
themselves.

3.1 Running Example

The webpage3 for the paper A fast approximation of the Weisfeiler Lehman
graph kernel for RDF data [16] won one of the two Open Science Awards at
ECML/PKDD 2013, the conference where it was published. On the page, links
to software libraries, datasets and the original source code are provided, as well
as instructions on how to run the experiments using the provided material.
The datasets are available online, via figshare.com, and the code is stored
in a git repository, at github.com. We have recreated two partial experiments
in the ECML/PKDD 2013 paper [16] for our proof-of-concept. We use these
experiments as running examples below. Note that we do not recreate the full
set of experiments in the paper. However, the recreated parts are a representative
subset, since we cover both a classification experiment and a runtime experiment.

In the classification experiment a number of graph kernels for RDF data
are tested on an affiliation prediction task. The goal in this task is to predict
affiliations for persons in the dataset. Three different kernels are tested, each for a
number of parameter settings. These kernels are combined with a Support Vector
Machine (SVM) to perform prediction. To reduce randomness, the experiment
is repeated 10 times, with different random seeds.

The runtime experiment uses the same graph kernels and dataset, but this
time the kernels are computed for different fractions of that dataset to investi-
gate the runtime performance of the different kernels. The most computationally
intensive settings for the kernels are used. For each dataset fraction, the compu-
tation is performed 10 times (on 10 random subsets).

3.2 Workflow System: Ducktape

Ducktape is a light-weight workflow system developed in the context of the
Data2Semantics4 project. This project provides essential semantic infrastructure
for e-science and focuses on how to share, publish, access, analyze, interpret

3 http://www.data2semantics.org/publications/ecmlpkdd-2013/
4 http://www.data2semantics.org



and reuse scientific data. Ducktape is designed to compose experiments using
components developed within the project. By using an annotation approach, we
keep the system light-weight and impose little additional effort for a scientist to
use his existing code in our environment.

Ducktape uses computational modules, which are annotated pieces of codes,
typically classes. The annotations indicate what the inputs and outputs of the
module are and what the main computation routine is. Currently, Java, Python
and command line scripts are supported.

A Ducktape workflow is described in a simple data flow format represented
in YAML (YAML Ain’t Markup Language) [17], which contains a list of modules
and specifications of each of the modules’ input data. Figure 1 shows part of the
workflow description for the affiliation prediction experiment. Module inputs
can either be raw data type values, i.e. integers, doubles and strings, or data
produced by other modules within the same workflow (e.g. Fig. 1, line 17, 20,
22).

Module input fields in the YAML workflow description can be supplied with
lists of inputs of the same type, to allow for parameter sweeps (Fig. 1, line 23).
Ducktape allows users to specify whether they want input lists to be consumed
in a pair-wise manner or whether the full Cartesian product between the lists
should be used in the parameter sweep. Furthermore, there are keywords to
indicate whether certain inputs represent datasets (Fig. 1, line 10), what module
outputs should be considered experimental results (Fig. 1, line 25) and for which
input parameter we want to aggregate results (Fig. 1, line 26).

3.3 Provenance: W3C PROV

Whenever a workflow is executed, Ducktape automatically generates the prove-
nance that captures this execution in the W3C PROV-O [6] format.5 Table 1
shows how the different elements of a Ducktape workflow map to the concepts in
W3C PROV. The main concepts from W3C PROV that we use are prov:Activity

and prov:Entity and their connecting relations: prov:used and prov:wasGeneratedBy.
Essentially, a workflow leads to a bipartite graph with alternating nodes of
prov:Activity and prov:Entity.

Modules are prov:Activitys and inputs and outputs are prov:Entitys. We model
this by creating a class dt-rsc:ModuleName6 with the name of the module for
all modules. Each dt-rsc:ModuleName is rdfs:subClassOf of prov:Activity. Every in-
stance of a module executed during the run of the workflow is an rdf:type of its
corresponding dt-rsc:ModuleName. We do the same for the inputs and outputs,
introducing a dt-rsc:InputName or dt-rsc:OutputName for each input and output,
which are rdfs:subClassOf of prov:Entity. Each input/output instance is an rdf:type

of its corresponding dt-rsc:InputName/OutputName. Outputs that are inputs of an-
other module have one unique URI. For example, the specific instance of ‘seed’

5 We note other serializations of PROV [18] can also be supported.
6 dt-rsc is a shorthand for: http://prov.data2semantics.org/resource/ducktape/



Fig. 1. Example of YAML workflow description from the Affiliation Prediction exper-
iment. The full workflow is not shown.

1 workflow:

2 name: "Affiliation Prediction Experiment IPAW 2014"

3 modules:

4 - module:

5 name: RDFDataSet

6 source: d2s.RDFDataSetModule

7 inputs:

8 filename: "http://.../aifb_fixed_complete.n3"

9 ...

10 datasets: filename

11 ...

12 - module:

13 name: Experiment

14 source: d2s.SingleGraphKernelExperimentModule

15 inputs:

16 matrix:

17 - reference: RDFWLSubTreeKernel.matrix

18 ...

19 target:

20 reference: AffiliationDataSet.target

21 parms:

22 reference: LibSVMParms.parameters

23 seed: [1,2,3,4,5,6,7,8,9,10]

24 folds: 5

25 results: [accuracy, f1]

26 aggregators: seed

with value ‘1’ in the module ‘Experiment’ in Fig. 1, line 23, would be of type
dt-rsc:Experiment/seed/7 which is an rdfs:subClassOf of prov:Entity.

Each module (dt-rsc:ModuleName) is associated with a prov:Agent, which rep-
resent the specific Ducktape engine used for execution (i.e. the machine(s) and
version), and a prov:Plan, the specific YAML workflow file.

Optionally, inputs can also be a dt-voc:Dataset8, if they refer to a dataset (e.g.
by a URL) or a dt-voc:Aggregator, if they determine how to aggregate experiment
outputs based on this input. Outputs can have the dt-voc:resultOf predicate that
links them to the workflow (i.e. prov:Plan), if they should be considered the results
of that workflow. These optional concepts are added when they are specified in
the YAML workflow file.

Furthermore, we also add the software artifact dependencies that we know
that are used during execution to the provenance. This is done by creating

7 There can be multiple inputs/outputs with the same name, so the module name is
also included in this URI.

8 dt-voc is a shorthand for: http://prov.data2semantics.org/vocab/ducktape/



Table 1. Mapping of Ducktape elements to W3C PROV

Ducktape W3C PROV Optional

Ducktape Engine prov:Agent
Workflow Description prov:Plan
Module Instance prov:Activity
Input prov:Entity dt-voc:Dataset, dt-voc:Aggregator
Output prov:Entity dt-voc:resultOf

URI for each artifact and adding it to the prov:Plan via a new property dt-

voc:usesArtifact. Currently, we manage our dependencies and execute our work-
flows using Maven9, thus each artifact furthermore has the properties: dt-voc:hasArtifactId,
dt-voc:hasGroupId and dt-voc:hasVersion.

3.4 Notebook Generation

Based on the generated provenance, draft IPython notebooks are created. There
are two types of notebook drafts: an overview notebook with general workflow
execution information and a more detailed notebook at the workflow module
level.

The overview notebook contains general information about the workflow
plan, software artifacts and datasets used. A summary of the Ducktape modules
instantiated during the experiment and inline provenance visualization gener-
ated using Prov-O-Viz [19] 10 is also included in this overview notebook to give
intuitive insight into the overall workflow execution. This notebook is illustrated
in Fig. 2 and 3.

The detailed notebook draft describes individual module execution results.
Users have access to the module input parameters and execution results through
default Python code snippets injected into the notebook. The code snippets are
generated by performing SPARQL queries on the workflow provenance graph. By
using these snippets, users can manipulate how they view the module parameters
and execution results.

We use the existing Python Data Analysis library (Pandas)11 in the code
snippets, to allow users to play with and change the view on their results. Es-
sentially, what the user has here is a data analysis view of each individual module
in workflow execution. By default we provide tables of relevant input and out-
puts for each individual module which users can change by tweaking the injected
Python code.

For modules that have input data marked as dt-voc:Aggregator, we provide a
pivot table, which aggregates the outputs that are dt-voc:resultOf, grouping by
the other input parameters. The default form of aggregation is computing the
mean value, however this can be easily changed by editing the code snippet. An

9 http://maven.apache.org/
10 http://provoviz.org
11 pandas.pydata.org



Fig. 2. Overview Report for the Runtime Experiment, part 1.

example of this aggregation is given in Fig. 4, where the results accuracy and
F1 are aggregated over the seed input parameter.

In summary, the notebooks for the classification12 and the runtime13 exper-
iments contain the following information: a list of datasets, a list of software ar-
tifacts, provenance visualization and detailed result tables. This is significantly
more information than the original webpage and the notebooks can easily be
extended by hand, both by changing the tables and adding more explanatory
text14. Currently, the notebooks lack instructions on how to re-execute the ex-
periments, this can be partly solved by adding instructions that explain how to
use the datasets and artifacts. However, in future work we would like to add
automatic re-execution of the workflow from the notebook, all the ingredients
are already there.

4 Conclusions and Future Work

We have described an approach for automatic generation of scientific documen-
tation for computational experiments. This is approach is based on the idea of

12 Available here: http://j.mp/ecml-notebook.
13 Available here: http://j.mp/runtime-notebook.
14 Note that the used artifacts are different from the original version, and that the

samples above are static views requiring a local IPython environment to edit.



Fig. 3. Overview Report for the Runtime Experiment, part 2.

placing provenance at the heart of such experiments, using it as the main output,
not just as a way to trace the execution of a workflow. Interactive notebooks
provide a way to explore the results and its provenance and are an ideal starting
point for creating documentation for the experiments.

We have created a proof-of-concept implementation to automatically gen-
erate IPython notebooks from provenance created by workflows run using our
Ducktape platform. These notebooks aggregate the main results and components
of an experiment. This automatically generated draft documentation provides
more information and insight then a hand-crafted documentation page for a
machine learning paper that won an Open Science Award.

While our proof-of-concept uses a specific workflow system and a specific
interactive platform to load and analyze the provenance, the approach is trans-
ferable to other workflow systems and interactive environments. Indeed, most
PROV serializations can be represented as a more human-friendly notebook.
Central to this conception is the notion that provenance can be a true interface
between the execution of an experiment and the analysis of its results.

Another outcome of this work is confirmation of the importance of connecting
interactive notebook environments and provenance. By using the IPython Note-
book environment, we were able to benefit significantly from the variety of tools
within that community, including notebook visualization (using the nbviewer
app) and analytics. We believe that the connection between notebooks in gen-
eral and distributed provenance generation is an area that the community should
look at in more detail as there are a number of areas of interest. For instance, one
may investigate the issue of maintaining the provenance of live results streamed
to notebook environment, encapsulating provenance within a notebook or track-
ing provenance of interactive sessions.

Beyond investigating these larger themes, there are a number of concrete ex-
tensions to the environment we intend to make. First, the current configuration



Fig. 4. Part of the detailed notebook for the Affiliation Prediction Experiment which
shows a table for the Experiment module.

does not allow us to directly re-run the experiments from within the notebooks.
We aim to implement such a feature to further improve reproducibility. Further-
more, while we can create links to software artifacts that were used, it would be
even nicer to link to the actual source code for these artifacts, if that is avail-
able. Therefore, we plan to investigate how to integrate with methods such as
GIT2Prov [20] to connect from execution to the source code. Furthermore, we
are also investigating what additional visualizations we can embed to make the
documentation richer.
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