514 research outputs found

    Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction

    Get PDF
    The depletion of cholesterol from membranes, mediated by β-cyclodextrin (β-CD) is well known and documented, but the molecular details of this process are largely unknown. Using molecular dynamics simulations, we have been able to study the CD mediated extraction of cholesterol from model membranes, in particular from a pure cholesterol monolayer, at atomic resolution. Our results show that efficient cholesterol extraction depends on the structural distribution of the CDs on the surface of the monolayer. With a suitably oriented dimer, cholesterol is extracted spontaneously on a nanosecond time scale. Additional free energy calculations reveal that the CDs have a strong affinity to bind to the membrane surface, and, by doing so, destabilize the local packing of cholesterol molecules making their extraction favorable. Our results have implications for the interpretation of experimental measurements, and may help in the rational design of efficient CD based nano-carriers

    Comparing Dimerization Free Energies and Binding Modes of Small Aromatic Molecules with Different Force Fields

    Get PDF
    Dimerization free energies are fundamental quantities that describe the strength of interaction of different molecules. Obtaining accurate experimental values for small molecules and disentangling the conformations that contribute most to the binding can be extremely difficult, due to the size of the systems and the small energy differences. In many cases, one has to resort to computational methods to calculate such properties. In this work, we used molecular dynamics simulations in conjunction with metadynamics to calculate the free energy of dimerization of small aromatic rings, and compared three models from popular online servers for atomistic force fields, namely G54a7, CHARMM36 and OPLS. We show that, regardless of the force field, the profiles for the dimerization free energy of these compounds are very similar. However, significant care needs to be taken when studying larger molecules, since the deviations from the trends increase with the size of the molecules, resulting in force field dependent preferred stacking modes; for example, in the cases of pyrene and tetracene. Our results provide a useful background study for using topology builders to model systems which rely on stacking of aromatic moieties, and are relevant in areas ranging from drug design to supramolecular assembly

    Capturing Membrane Phase Separation by Dual Resolution Molecular Dynamics Simulations

    Get PDF
    [Image: see text] Understanding the lateral organization in plasma membranes remains an open problem and is of great interest to many researchers. Model membranes consisting of coexisting domains are commonly used as simplified models of plasma membranes. The coarse-grained (CG) Martini force field has successfully captured spontaneous separation of ternary membranes into a liquid-disordered and a liquid-ordered domain. With all-atom (AA) models, however, phase separation is much harder to achieve due to the slow underlying dynamics. To remedy this problem, here, we apply the virtual site (VS) hybrid method on a ternary membrane composed of saturated lipids, unsaturated lipids, and cholesterol to investigate the phase separation. The VS scheme couples the two membrane leaflets at CG and AA resolution. We found that the rapid phase separation reached by the CG leaflet can accelerate and guide this process in the AA leaflet

    Direct and Regioselective Di-alpha-fucosylation on the Secondary Rim of beta-Cyclodextrin

    Get PDF
    A straightforward glycosylation method is described to regio- and stereoselectively introduce two alpha-L-fucose moieties directly to the secondary rim of beta-cyclodextrin. Using NMR and MS fragmentation studies, the nonasaccharide structure was determined, which was also visualized using molecular dynamics simulations. The reported glycosylation method proved to be robust on gram-scale, and may be generally applied to directly glycosylate beta-cyclodextrins to make well-defined multivalent glycoclusters.</p

    Transferable MARTINI Model of Poly(ethylene Oxide)

    Get PDF
    Motivated by the deficiencies of the previous MARTINI models of poly(ethylene oxide) (PEO), we present a new model featuring a high degree of transferability. The model is parametrized on (a) a set of 8 free energies of transfer of dimethoxyethane (PEO dimer) from water to solvents of varying polarity; (b) the radius of gyration in water at high dilution; and (c) matching angle and dihedral distributions from atomistic simulations. We demonstrate that our model behaves well in five different areas of application: (1) it produces accurate densities and phase behavior or small PEO oligomers and water mixtures; (2) it yields chain dimensions in good agreement with the experiment in three different solvents (water, diglyme, and benzene) over a broad range of molecular weights ( 3c1.2 kg/mol to 21 kg/mol); (3) it reproduces qualitatively the structural features of lipid bilayers containing PEGylated lipids in the brush and mushroom regime; (4) it is able to reproduce the phase behavior of several PEO-based nonionic surfactants in water; and (5) it can be combined with the existing MARTINI PS to model PS-PEO block copolymers. Overall, the new PEO model outperforms previous models and features a high degree of transferability

    Coupling Coarse-Grained to Fine-Grained Models via Hamiltonian Replica Exchange

    Get PDF
    The energy landscape of biomolecular systems contains many local minima that are separated by high energy barriers. Sampling this landscape in molecular dynamics simulations is a challenging task, and often requires the use of enhanced sampling techniques. Here, we increase the sampling efficiency by coupling the fine-grained (FG) GROMOS force field to the coarse-grained (CG) Martini force field via the Hamiltonian replica exchange method (HREM). We tested the efficiency of this procedure using a lutein/octane system. In traditional simulations, cis-trans transitions of lutein are barely observed due to the high energy barrier separating these states. However, many of these transitions are sampled with our HREM scheme. The proposed method offers new possibilities for enhanced sampling of biomolecular conformations, making use of CG models without compromising the accuracy of the FG model

    Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations

    Get PDF
    AbstractThe thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane

    Polarizabilities in the condensed phase and the local fields problem: A direct reaction field formulation

    Get PDF
    A consistent derivation is given for local field factors to be used for correcting measured or calculated static (hyper)polarizabilities in the condensed phases. We show how local fields should be used in the coupled perturbative Hartree–Fock or finite field methods for calculating these properties, specifically for the direct reaction field (DRF) approach, in which a quantum chemically treated “solute” is embedded in a classical “solvent” mainly containing discrete molecules. The derivation of the local fields is based on a strictly linear response of the classical parts and they are independent of any quantum mechanical method to be used. In applications to two water dimers in two basis sets it is shown that DRF matches fully quantum mechanical results quite well. For acetone in eleven different solvents we find that if the solvent is modeled by only a dielectric continuum (hyper)polarizabilities increase with respect to their vacuum values, while with the discrete model they decrease. We show that the use of the Lorentz field factor for extracting (hyper)polarizabilities from experimental susceptibilities may lead to serious errors

    Dual Resolution Membrane Simulations Using Virtual Sites

    Get PDF
    All-atomistic (AA) and coarse-grain (CG) simulations have been successfully applied to investigate a broad range of biomolecular processes. However, the accessible time and length scales of AA simulation are limited and the specific molecular details of CG simulation are simplified. Here, we propose a virtual site (VS) based hybrid scheme that can concurrently couple AA and CG resolutions in a single membrane simulation, mitigating the shortcomings of either representation. With some adjustments to make the AA and CG force fields compatible, we demonstrate that lipid bilayer properties are well kept in our hybrid approach. Our VS hybrid method was also applied to simulate a small lipid vesicle, with the inner leaflet and interior solvent represented in AA, and the outer leaflet together with exterior solvent at the CG level. Our multiscale method opens the way to investigate biomembrane properties at increased computational efficiency, in particular applications involving large solvent filled regions
    • …
    corecore