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Polarizabilities in the condensed phase and the local fields problem:
A direct reaction field formulation
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A consistent derivation is given for local field factors to be used for correcting measured or
calculated statiéhypeppolarizabilities in the condensed phases. We show how local fields should be
used in the coupled perturbative Hartree—Fock or finite field methods for calculating these
properties, specifically for the direct reaction fi¢l2RF) approach, in which a quantum chemically
treated “solute” is embedded in a classical “solvent” mainly containing discrete molecules. The
derivation of the local fields is based on a strictly linear response of the classical parts and they are
independent of any quantum mechanical method to be used. In applications to two water dimers in
two basis sets it is shown that DRF matches fully quantum mechanical results quite well. For
acetone in eleven different solvents we find that if the solvent is modeled by only a dielectric
continuum (hypeppolarizabilities increase with respect to their vacuum values, while with the
discrete model they decrease. We show that the use of the Lorentz field factor for extracting
(hypeppolarizabilities from experimental susceptibilities may lead to serious errors20G2
American Institute of Physics[DOI: 10.1063/1.1512278

I. INTRODUCTION the PCM(Ref. 13 calculations of Cammét al® on formal-

Theoretical and computational studies of nonlinear opti-dehyde in water, and found no appreciable increase in the

cal (NLO) properties of molecules are of increasing impor- polarizabilities if the-solvent is queled yvith discrete mol-
tance for generating insight into such phenomena at the mcules. Our conclusion was that if anything happens at all,
croscopic level, and may even lead to the tailoring of NLoPolarizabilities will bereducedon going from the gas to
materials. Most of these studies address only molecules or, 8Me condensed phase. More recently, Morita and Kato
best, single chain oligomers or small clusters of moleculesteported similar results for simple systems in water and other
with or without extrapolations to macroscopic systems. Inliquids.
contrast, most measured properties of matter stem from ex- Hence, we have reasons to doubt the validity of the con-
periments in some condensed phase, be it in solution or ifinuum model, in which the molecule of interete., the
the solid state. Obviously, spectra afiypeppolarizabilities ~ solutg is treated by more or less conventional quantum
may be, and in general are, quite sensitive to “environmenchemical methods, while the rest of the univefthe solvent
tal” effects, and to such an extent that correlating experimener the rest of, e.g., a crysjak modeled by a single param-
tal and theoretical values for such properties is nontrivial. eter, i.e., the dielectric constant of the bulk material, without
Recently, Bishopand Wortmann and Bishdmddressed any reference to the structure in the condensed phase.
the problem of connecting single-molecule property calcula-  Here we do not want to go into all formal and practical
tions and actual measurements. They derived local field fagsroblems associated with mixing microscofiie., the wave
tors from an extension of Onsager’s reaction field, i.e., thgunction) and macroscopid(i.e., the dielectric constant
simplest of the continuum models for solvating a neutraldescriptors>®We only note that it is to be expected that the
molecule, but they gave no numerical results. It seems thaflectronic properties of the solute are largely effected by the
experimentalists and theoreticians very often rely on thisirst few shells of its neighbors, and the more so the more
‘molecule in cavity” model in order to account for bulk structured these shells are. Modeling a solvent with discrete
effects on measured polarizabilitfe§ where the Lorentz mojecules gives rise to many solute—solvent interactions,
field is taken as a_local field. _ which are most likely anisotropic and in principle different in
Also, computational efforts to describe solvent effects ongach of the many different configurations needed to arrive,

(hyper)p(r){lil{ilz_abilit_ies are dominated by the continuum sfier averaging over the degrees of freedom, at a “homoge-
approactr,~invariably reporting largethypeppolarizabili-  a6,5" solution. In contrast, the continuum solvent model

ties in solution than in the gas phase. Recently we rep€atedgia i with the assumption that the solution is homogeneous

and calculates interactions between the solute and “aver-
@Author to whom correspondence should be addressed. Electronic maiaged” molecules neglecting the instantaneous anisotropies

,duiinen@chem.rug.nl . and specific interactions. The different approaches are bound
Also at Radiation Chemistry Department, Interfaculty Reactor Institute, . .
Delft University of Technology, Mekelweg 15, 2629 JB, Delft, The Neth- to give different results.

erlands. Figure 1 illustrates that an electronic charge distribution
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DRF method, discuss what is to be expected for polarizabil-
ities in the condensed phase, and derive local field factors
which can be used for correcting calculated or measured po-
larizabilities. As applications we report first fully QM and
DRF results for some water dimers in order to see how DRF
performs, and finally QM/MM results for acetone in eleven
solvents.

II. POLARIZABILITIES OF INTERACTING MOLECULES
AND THE LOCAL FIELDS

Consider a set of pointénolecules or atoms{p} with
polarizabilities {ap} in an electrostatic fieldfg. For the
induced dipole momerm,, in point p we havé®~*®

m

— 0
_ _ N _ _ o= ap| O+ > thmyg 1)
FIG. 1. An atom or molecule in a cavity of radiasin a continuum with

dielectric constant. Vacuum(—) and “solvated” model wave functions with t.. the dipole—dipole interaction tensors. given b
(---) and a model radial distributiog(r) for the “solvent” are shown. P4 P P ' 9 y
_ T 5 3
thq=3(rp,=rg)(rp—rg) /[rp—rql>=/|rp—rgl°, 2

in a cavity in a dielectric is always inflated, because the statigvith | the unit matrix. A formal solution for thém,} can be
dielectric will always stabilize a more extended charge disfound by collecting the BIP* equations into a single super
tribution, leading to an increase of its polarizability. matrix equation of dimension g% x 3N,
A major problem with the continuum approach is the _~/0
definition of the size and shape of the cavity. In Fig. 1 also a M=a(F+TM), &
model radial distributiong(r), of the solvent is shown. If whereF° andM are NP°-dimensional vectors, arid (i.e.,
we want to associate the dielectric with a structureless, hothe diagonal blocksy,) andT (i.e., the off-diagonal blocks
mogeneous continuum, it is clear that the boundary shoulth,) are square BP°x 3NP°' matrices. Then
be put at least beyond the first peakgifr). This makes the A=[a 1-T] ! @
cavity so large that a neutral solute does not “feel” the
solvent!” For smaller cavities one has to take care of theis an ordinary polarizability matrigut of anNP°' membered
“leaking” of electron density®~2?and of the solvent struc- system, and
ture. The lack of solvent structure, and the fact that a static 0
dielectric can only stabilize, makes the present continuum M=AF". ®)
y ) p
models unfit to account for the finer details of the solute’s  The matrixA is obtained either by an exact matrix in-
electronic structure. version or the associated linear equations are solved by itera-
In the direct reaction fieldDRF) approactf®?*a quan-  tion. Optionally one may reducgparts of A first to (sub
tum mechanically treated solute is surrounded by discretgroup polarizabilities,
solvent molecules, modeled with point charges and explicit NG
local polarizabilities. Optionally, a dielectric continuum en- G )
veloping the complete system may be added. All charges, amn:izj (Aimn; mne{xy,z} ©®
i.e., including the solute’s electrons and nuclei, interact self-
consistently with each other and with the polarizabilities.SC @S to reduce the dimensionality of the problem.
Thus, such calculations mimic at least so-called “supermol- ~ For easy Greference we repeat here that the induction en-
ecule” SCF calculations. Hence, in this approach, all “local €r9Y 1S giveri® as the sum ol g,=—M-F° and the polar-
fields"—up to the linear response of the classical parts—aréZation energyUy,, i.e., the energy needed to create the
accounted for. The degrees of freedom of the discrete partgduced dipoles,
of any system can be sampled by statistical mechanics simu-
lations, Monte CarldMC) or molecular dynamic¢éMD), at UPO':f
ambient temperatures. By choosing a sufficient number of
configurations from the MC or MD simulations any solution yielding
structure can be accounted for. DRF has been implem&hted 0 00
in HONDO8.1,%° GAMESSUK),2® and zinpo (Ref. 27) and was Uing=Ustait Upo= — F"M/2= —F AF/2. ®)
applied—in its QM/MM form—to solvatochroisii?;*® and  Combining with Eq.(5) we express this as a sum over the
to a reactive systerif, while in its completely classical individual contributions,
form® it is able to reproduce many body effects well in
comparison with good _quallt_y SCF calculatltﬁ_?rs. Upg=— %2 O, = — %E fioaifi , ©)
In this paper we will review some essential parts of the i i

1
FONMdA=F°M/2 (7)
0
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TABLE |. Effective polarizabilities(in Bohr®) in clusters ofisotropic mono-
mers, from Eq(4). Interatomic distance is 8 Bohr throughout.

n Membefs) gy ayy sy a

1 5.749

2 a 5.881 5.686 5.686 5.751

3 a 6.014 5.622 5.622 5.753
b 5.901 5.678 5.678 5.753

5 a 5.827 5.827 5.601 5.752
b? 5.588 5.588 5.496 5.635

7 a 5.762 5.762 5.762 5.762
b° 5.921 5.699 5.635 5.750

#x andyy values are pairwise interchanged.
bValues are permuted over the six members.

which is, due to the self-consistency,
permanenfieldsfi0 nor in thetotal (local) fieldsf; . Because
the response of all parts is strictly linear, E&) can be
written as

Uing= — %Z feifP(1+9y) (93

with the expression in parentheses the local field factor.
Consider two objects with polarizabilities; and a5,

respectively, at a finite distaneg,. Then we get from Eq.

van Duijnen et al.

We see that in each cluster symmetry unique objects
differ in the components of their local polarizabilities. Some
are larger, some are smaller than for the monomer, depending
on the symmetry and the position in the cluster. For isotropic
objects on regular lattices the mean local polarizabilities are
always larger than for the monomer.

Next, we constructed an anisotropic polarizability by
putting the two polarizabilities of the preceding paragraphs
at a distance of 2.3 Bohr following Thole’s recip&contract-
ing the wholeA to a 3X 3 matrix, and assigning the result to
the center of this object. We used this as input for some
simple clusters of anisotropic monomésee Fig. 2b)]. Re-
sults(Table Il) show that now, depending on the structure of
the cluster, not only the polarizability components may be

quadratic neither in thémaller than that of the monomer, but also the mean polar-

izability. These effects scale in a simple way with the “in-
put” polarizabilities as can be seen from EGO).

In summary, what will happen to local polarizabilities in
the condensed phases is hard to estimate without calcula-
tions. This is also demonstrated by the work of Augspurger
and Dykstrd® on acetylene clusters where fbnear com-
plexes arincreaseof the axial components of the linear and
second hyperpolarizabilities are found, while Van Duijnen
et al? obtain forparallel clusters of butadienes and Kirtman

(4),% for the components of the total polarizability of the et al® for hexatrienes alecreasein the same properties.
aggregate, parallel and perpendicular to the line connectingjhese authors also show that well constructed fully classical

aq and as,

agt a2+4a1a2/r§2
Q= ;

1—4a1a2/r?2 '
10
_a1+a2—2a1a2/r§2 ( )

6
a, = (ri,>4a,a5).

6

Even in the case of isotropic polarizabilities; = «,
= a, it follows from Eq.(10) that the total polarizability will
obviously be anisotropic. If we want to defirdfectivepo-
larizabilities from Eq.(10) for the members we musarbi-
trarily!) distribute the interaction term. Far, = «,, equipar-
titioning could work, leading to local anisotropy,(local)
>a andea, (local)<ea, but for a# a, no scheme is obvious.
One possibility is weighting the interaction tethwith the

electrostatic models are able to reproduce these results.
Here we note that only a single polarizabiliyr suscep-
tibility ) exists for any system. The reconstruction from local
contributions is in fact an abstraction, the result of which
depends on the detail wantéchacroscopic with local sus-
ceptibilities, or microscopic with local polarizabilitieand—
more importantly—on the partitioning of such properties.
However, experimental chemists are used to such proce-
dures: from well chosen series of compounds they derive
“bond energies” as “local” contributions to heats of forma-
tion and “ionic radii” from crystal structures. Theoretical
chemists obtain “atomic charges” from, e.g., a Mulliken
analysis of their wave functions and we are able, following
similar reasoning, to construct molecular polarizabilities
from atomic ones>“%although there is formally no connec-

original polarizabilities. This may work better in the general tion between them, and—in an opposite direction—we can

case, but it is just as arbitrary. Here the total mean polarizz

ability a4, will be larger thane. In order to find out whether
this holds generally for combining arbitra¢gnisotropi¢ po-

larizabilities in arbitrary relative positions we looked into a

number of simple cases. We took two and th(ee a line,
five (on a squareand seven(on an octahedrgnisotropic

polarizabilities @~6 Bohr) separated by at least 8 Bohr
[see Fig. 2a)] and computed their individual and collective
behavior. We took this distance because then the treatmeni

can be completely classicil.For each cluster first Eq4)
was solved and then we applied E) to obtain the effec-

decompose” a many center polarizability matrx into lo-

cal contributions, in which a one-to-one assignment of the
interaction blocks to the corresponding diagonal “local”
blocks looks like the Mulliken scheme, while a weighted
assignmente.g., with the traces of the diagonal blogkll

look like the Lavdin scheme for a population analysis. In
this sense we can at least assess the local contributions to the
ystem’s polarizability, although only within an arbitrary but
well defined frame work.

The extension of Eq(5) with a dielectric continuum

tive polarizability components for the individual members.around the discrete pés is straightforward. For a dis-
The interaction parts ifA were equipartitioned, i.e., each cretized surfaces [boundary element method@EM) (Ref.
column of A corresponding to a particular member was con-41)] the final result can be expressed in a set of linear equa-

tracted to a X 3 matrix. Results are in Table I.

tion of finite dimensioné?
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X TABLE |I. Effective polarizabilities(in Bohr®) in clusters ofanisotropic

X
r r
——r—®——> monomers. Monomer constructed from two atqisee Table)lat a distance

of 2.3 Bohr following Eg.(4). Interatomic distances between molecules
~6 Bohr. (Numbers initalics: distances-8 Bohr.)

n Structure Members  ay, ayy ayy a
1 13.904 9.248 9.248  10.800
2 head to tail a 14572 9.103 9.103 10.926
14261 9.171 9.171 10.868
o perpendicular a 13576 9.027 9.901 10.835
13.740 9.139 9.581 10.820
b b 8.916 9.027 14570 10.838
Y 9.084 9.139 14.240 10.820
Q e 0 skew(45°) a 13.252 8.895 10.076 10.741
13.603 9.087 9.652 10.781
b 10.919 8.894 12.418 10.744
11.274 9.086 11.983 10.781
0 parallel a 13.121 8.895 9.909 10.642
13.543 9.087 9.570 10.733
3 parallel a 12.344 8544 10.590 10.493
X 13.183 8926 9.896 10.668
@) b 13.062 8.862 10.062 10.662
13.506 9.069 9.625 10.734

z

° ° set of induced dipoles on the surfaBeThe right-hand side

(rhs) matrix A’ is given by
head to tail a';1+qu VpKIpSI -1
A'= _fp| _ K|J (12)
2m(1l+e) 2m(1l+¢)

X X
; with ¢ the (total) dielectric constant of the continuum. In the
° z rhs vector all electrostatic source fielffs at the discrete
polarizable points and potentials(v, at the representative
points ofS) are collected. In Eq.12) we have adde¢redun-

parallel perpendicular dany indices for clarity: lower case indices for discrete po-
larizable points and capitals for boundary elements. In the
top-left block of Eq.(12b) the matrix of Eq.(4) will be
recognized, whileK and VK are more or less complicated
potential and fieldlike kernels, depending erand the ge-

ometry of S.
7 7 We note that leaving out the continuum just E4) re-
’ mains, while for the continuum-only approach only the bot-
tom right block remains. But the general picture remains the
same, i.e., all information about the reaction potentials are
skew 3 paraliel contained in a single relay matrix.

(b)

FIG. 2. (a) Arrangement of two, three, five, and seven identical isotropic

polarizabilities withr =8 Bohr. The monomer polarizability is arbitrary lll. THE ENERGY EXPRESSIONS

taken as about 6 Bohfactually 5.88 i.e., the model value for the oxygen IN THE DRF APPROACH

atom (Ref. 36 in our database Letters a, b, and c indicate symmetry

equivalent atoms within each clustéb) Arrangement of two and three The DRF approach has been described many times
identical anisotropic polarizabilities. The monomer anisotropic polarizability e|sewher&?*43and here we just give some relevant energy

is constructed from two monomers (@ at 2.3 Bohr. Minimal distance oy yregsions. The total energy of the system can be written as
between objects in the clusters is 8 Bohr.

AUTST=AYM AUMM - AYMMM (13)
fy with AUSM the expectation value of the vacuum Hamil-
Mol _ . tonian of the QM over the nonvacuum wave functian)™
=A \4 y (11) . M/MM .
Q 2n(1%8) the energy of the classical pé)t and AU® the inter-

action in the actual configuration. Here oy °M and the
with in the left-hand sidelhs) vector M representing the electronic parts oA UMMM gre of importance. The latter is
induced dipoles at the classical polarizable points @the  here given for the discrete case only. Witk,= 1/|rp—r5|
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the operator for the Coulomb potential@from a source at with w the dipole operatore the elementary charge, while
s, andfs,= — Vv, the corresponding electric field operator m,n refer to basis functions. For the first and second field

we get derivatives of the wave function we write
2
AUSYMM—e > gA(v(k;i))+e Zif As(f(sk N _ vy il
el A§|:k qi (v(ksi)) A,i%;r,s ifir Ars(f(s1K) 07_fi=|\I’|>’ é’fié’fl- =|\I/|l>’ (183
+eA %:r . a’fi Ars(f(SK) then we can construct the following density matrices,

5 DO=|wO)(WO; DI=|wi) (¥,
e
il : , . . . . (18b
+ 2 k%,s <f(k:r)>Ars<f(Su|)>v (14) DJk:|q,J><q,k|; D]k|=|\I’J><\I’kI|,
where the{Z} are the nuclear charges, thg} the classical \yhere it is assumed that contributions obtained by permuting

charges, and---) denote expectation values over molecularthe indices are summed. Then we have to fourth order,
orbitals (MOs). The A, are block matrix elements relating

polarizable points at ands of the matrixA (i.e., A or A’, pe=Tr(Dh); a;=Tr(D'h),

see above which maps the linear response functions of the o o (19
classical parts. In all inductive contributions the polarization g =Tr(DI*h'); ;) =Tr(D*'n').

“cost” energy is here included, although we keep it in prac-

tice separated in order to make it also possible to deal with ~Both approaches, FF and CPHF are easily extended to
nonequilibrium situations. For clarity we have made explicitthe DRF method. If we write for the solute’s contribution to
the electronic chargée) and the electror(or, rather MQ  the change in total energy,

labels(k,l) in the potential and field expectation values. (AU £)). = _[ ooy, QMM £ ..

- solute, QM/MM ext
= + - fé +a.)+---
IV. SYSTEM IN AN EXTERNAL FIELD [rorr+ 1 li (1 +g0)

20
If a system is placed in an external electrostatic fiéld, 29
the change in energy can be expanded as with f the local field at QM angu®™MM stands for all di-
1 1 poles induced by the solute in the classical parts, it will be
AU(f)=— Miofi+ o a;ifif;+ aIgijkfifjfk clear that the perturbing operator for CPHF must be adapted

to reflect the use of the actual field at QM. For FF it is only
needed to add the external field to the sources in(E2g
;o ALk e{xy,z}, and solve the resulting linear equations.
From Eq.(8) we obtain for the solute’s contribution to
(15 the total induction energy,

with «° the permanent dipole moment,the polarizability
tensor, ang3 and vy the first and second hyperpolarizabilities

1
+ oy Y fif i+

(U9 =32 F7Yaf}

ggézeoi?):ﬁteergé;:;;r?d;z f/m«aamsduzmmeoI oueltpermute: ==z e+ 3Bt 3vija T
One can use Ed15) by applying various field strengths == t2%a;; + 3 B+ 1y FT(L+a))]
and determine numerically the derivatives & (f) to ob- ox ex
tain the dipole moment and thaypenpolarizabilities. This XA+ g (1+9)) (21)

Iinite.fielg (FP) approa?h isdapk?lilcl:ablle tlo gny type of wave andU,,4 should be expanded in the variof®&{1+ g) rather
unction for QM. For closed shell, single determinant wavey - in'text itself when using the FF method.

functions, the coupled perturbative Hartree—Fd€eHRP Since we require the usual symmetry for tthgpedpo-
(Ref. 44 method is a good alternative which is generallyI fizabilities
faster. The first and second derivatives of the total energy 0? ’

QM (in the Born—Oppenheimer approximatjoim vacuum aij=ai; Bik=Buij=Bxi="";
w.r.t. the components of the fiefdare (22)
JAUD] _ . FAUM] () . Yiiki = Yiijk = Vkiij = Viki =
ar Hile ot 08, J; e the local field factors are obtained from the following expres-
(16)  sions:

with ' the total dipole moment and® the electronic con-

I . ) g2y Solute
tribution. In CPHF, applied to a molecule in vacuum, one? “ind
takes the electronic part of the first derivative Dt (f) as af;of;
the perturbing Hamiltonian,

= — &%) a” == Tl(a+g)+(1+g)], (239

=~ 5laij(1+g)+a;(l+g)]

Downloaded 24 Oct 2002 to 129.125.7.197. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 18, 8 November 2002

aSUjsocliute

n

ot oot 3 [Bijk(1+9j)(1+gw) + Byij(1+gi)(1+g;))
i97;

+ Bjki(1+9)(1+g+-]
=- %[(1+gj)(1+gk)

+(1+9)(1+g0)+(1+g)(1+9))], (23b)
(94Uﬁ1°é“te 1

WZ 7 [Yij (1 +9)(1+g)(1+g))

+ %k (1+ 90 (1+9))(1+g)+- ]

—— D149 (14 g)(1+g)

+(1+g)(1+g)(1+g)+(1+gi)(1+g))
X(1+g)+(1+g)(1+g)(1+g0]. (239

The{g} in Egs.(23) depend on the actual partitioning of

the system, on its geometry and the particular gejirfor

which the fields are to be evaluated. Obviously one can cal-
culateg’s for any point, but only the assumed center of the

Polarizabilities in the condensed phase 8447
since all charge distributions inside the cavity feel the field
from the continuum polarization, while the dipoles induced
on the boundary, represented by fheSmaimn integrals,
feel only £ All necessary ingredients for calculating the
g’s referring to any point are available after solving the ap-
propriate linear equations with appropriate source fields.
Theg®"¥@Ydepend on the shape of cavity. For a spheri-
cal cavity the fieldf®® due to the polarization of the con-
tinuum, insidethis cavity is uniform and parallel t&<, and
is given by

FOR=[ /(26 + 1) = (1+ goRY o

g®=(e—1)/(2e+1). @7
We note that for a sizable, practically spherical, discrete clus-
ter the QM part does not generate appreciable induced di-
poles on the boundary, so we can fi$&directly without the
continuum being actually present, in which case 8§) is
reduced to

(N bre= — €{ (fthn( 1+ gPscreG + [ u QMMM )

X (1+gf™)} (28)

electric moments and polarizabilities of QM is needed, forWhich will enable one to apply this as a “bulk correction” to
which usually the center of mass is chosen. We note that th@"y cluster of roughly spherical shape.

dipole moment for a neutral molecule and all polarizabilities

The Lorentz field is often used for correcting measured

are origin independent. For example, take two different cenSUsceptibilities with

ters,R and X, for evaluating the dipole integrals. Then, e.g.,

for the linear polarizability one has
aj(R)=Tr(D'(R) = X Dl R),
a;j(R")=Tr(D'n'(R"))
=2 Dind Mon(R) = (Ri= X)) Syl

=Tr(D'h'(R))— (R — X)) Tr(D'S)
=Tr(D'h'(R)), (24)

with Sthe overlap matrix. TiD!S) is the(field) derivative of
the number of electrons, which is obviously zero.

1

lorentz_ e
g —

3

f lorentz_ i (29)

3 1
for all directions and disregarding all actual local polariza-
tions. In the derivation of Eq(29) it is assumed that the
(macroscopig! system is uniformly polarized, and hence,
formally, the Lorentz field is only applicable for pure sub-
stances. However it is a rather crude approximation and may
lead to substantial errofsin particular in the microscopic
description we have in mind. We have

(hmn)iDRF: - e{Mirnn(1+ glorentZ)}'

From the CPHF calculations one obtains, using the per-
turbation from Eq.(25), (26), or (27), a linear polarizability

(30

The actualg's to be calculated also depend on the con-a~"*Fwhich contains the polarizations of the classical parts.
stituents of the complete system. For a DRF cluster ifFrom the associated density matrices the solute’s electronic
vacuumfe resides in the vacuum and the solute’s e|ectron§ontri_butio_ns is calculated and corrected by applying the ap-
feel this field modulated by the fields from the induced di-PropPriate field factors of E¢23a),
poles at the classical polarizabilities, while the dipoles in- 2 Tr(DIh)
duced by QM only feef®. Hence we have for the perturb- o W— 0

U [(L4g)+(1+g)]”

ing operator,
(M) be= —ef (g (1+ gaiscretg [ , QUMM y1 vv_here Fhe zero in Eq31) emphasizes that only the vacuum
o=~ € (#mr( 1+ Hedscrete )} (25 dipole integrals of QM are used. On the resulting" the
. - . total field on QM is first applied to obtain the dipole induced
QM/MM
where the] 1 giscrete Imn are the integrals defining the dipoles i field which is present in the self consistent solution of

induced by QM at the discrete pct)lanz_ablhtl_es. If & con-yne CPHF/DRF procedure because of the presence of terms
tinuum is present we assume tH&t' resides in that con- like [ xQYMM] in the perturbing operator. Then the corre-
tinuum, leading to sponding reaction field is obtained by solving E#&j2) with
(N bre= — e{(wh, (14 gsores + [ L QWMMT ) this ir_lctijug:ed dipole as only source. This reaction field, yield-
boundar oMM ing g, is added to the total field at QM and the/™" is
X(1+g; ¥+ [ Mboundarg mnt corrected again with this final field,

(31)

(26)
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TABLE lIl. Comparison of full quantum an¢exacy DRF calculations for two water dimers using two basis sets. The first molecule is Zn=tBeplane with
its dipole moment along th¥-axis. Left-hand columns: Sadlej bagiRef. 46; right-hand columns DZP basifkef. 47). Point charges on the classical

molecules reproduce the monomer vacuum dipole moment. For the classical molecular polarizability the calculated vacuum monomer tensor Was used. Al

data in atomic units(top) Parallel dimer constructed by shifting an image of the monomer by 5 Bohr i#-thieection. (bottom) Hydrogen bonded water
dimer constructed by shifting an image of the monomer by 5.325 Bohr in the OH direction. Parameter as above.

dimer- drf dimer-
Property mono  dff) drf(2) dimer BSSE BSSE (1+2) mono  drfl) drf(2 dimer BSSE BSSE drf (1+2)

My -0.79 -0.74 -0.74 -—-148 0.0 —-1.48 -148 -0.89 -0.85 -0.85 -1.69 0.0 —-1.69 -1.70

Qyy 9.40 8.83 8.83 17.95 -0.01 17.96 17.66 7.43 7.20 7.20 14.70 0.16 14.54 14.40
ayy 8.66 8.13 8.13 16.50 —-0.02 16.52 16.26 5.59 5.44 5.44 11.01 0.11 10.90 10.89
@y, 7.90 8.68 8.68 16.22 0.08 16.14 17.36 3.03 3.16 3.16 7.37 2.22 5.15 6.31
a 8.65 16.89 16.87 17.09 5.35 5.27 5.27 11.02 10.20 10.54
Byxy 10.5 11.1 11.1 21.3 0.3 21.0 22.2 20.8 20.1 20.1 39.0 0.22 38.8 40.1
Byyy 5.1 8.4 8.4 16.6 2.0 14.6 16.8 10.0 9.9 9.9 18.5-0.27 18.7 19.8
Byzz -06 1.5 15 5.1 1.3 3.8 3.0 0.6 0.8 0.8 35 0.7 2.8 1.6
By 9.0 12.6 12.6 25.8 23.6 25.2 18.9 18.4 18.4 36.6 36.2 36.9
Bun 7.1 —38.2 -350 —-37.3 -16.7 -—157 -—-157 -61.7 —61.3 —62.9
Vxxxx 501 470 470 974 62 912 940 192 179 179 320 3 317 357
Vxxyy 292 273 273 553 23 530 546 140 132 132 238 2 236 264
Vaxzz 296 280 280 626 a1 585 560 11 12 12 69 111 —42 24
Yyyyy 790 736 736 1551 124 1427 1472 61 58 58 99 0 99 117
Yyyzz 331 311 311 702 60 641 621 6 7 7 29 61 -32 14
Y2227 1223 1501 1501 3246 299 2947 3002 12 14 14 728 1399-671 28

y 871 1906 1759 1773 116 110 110 364 14 221
My 0.00 —0.05 0.00 0.13 0.00 0.13 -0.05 0.00 0.00 0.06 0.12 0.00 0.12 0.06
My -0.79 -0.82 -0.79 -1.62 000 -162 -160 -0.89 -0.89 -090 -1.82 0.00 -1.82 —-1.79

Qyy 9.41 9.68 9.40 19.29 -0.01 19.30 19.08 7.43 7.44 7.71 15.39 0.21 15.18 15.15
ayy 8.66 8.66 8.66 17.45 0.01 17.44 17.32 5.59 5.59 5.67 11.60 0.31 11.29 11.26
[ 7.90 7.48 7.90 15.16 0.05 15.11 15.38 3.03 3.03 3.00 5.98 0.05 5.94 6.03
a 8.66 8.61 8.65 17.30 17.28 17.26 5.35 5.35 5.46 10.99 10.80 10.81
Byxx 0.0 -0.6 0.0 2.8 0.0 2.8 —0.6 0.0 0.0 -1.0 11 11 0.0 -1.0
Byxy 10.5 8.1 10.5 19.1 -0.2 19.3 18.6 20.8 20.8 22.5 37.7 —-20 39.6 43.4
Byyy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Byxzz 0.0 -1.6 0.0 0.7 0.0 0.7 —-1.6 0.0 0.0 -0.7 2.2 1.7 0.5 -0.7
Byyy 51 5.7 51 11.1 1.4 9.7 10.8 10.0 10.0 10.2 18.9 1.4 17.5 20.2

2z 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bx 0.0 -1.1 0.0 3.0 3.1 -1.1 0.0 0.0 -0.8 1.9 0.4 -0.8

By 9.0 8.6 9.0 175 16.5 17.6 18.8 18.9 19.9 34.6 34.8 38.8
Bun 7.1 —6.9 -7.1 —27.9 —-26.3 —28.1 -16.7 -16.8 —-18.0 -—-62.7 —63.4 —69.5
Vrxxx 502 508 501 1069 40 1029 1009 192 193 230 552 116 436 423
Vxxyy 293 306 292 636 1 635 598 140 140 159 437 114 323 300
YVyxzz 296 262 296 548 32 516 559 11 11 11 20 7 13 22
Yyyyy 791 730 790 1614 76 1539 1520 61 61 65 311 216 96 126
Yyyzz 331 284 331 603 24 579 615 6 6 6 13 7 6 12
Yirsy 1224 1037 1223 2256 177 2079 2261 12 12 12 23 2 22 24
y 872 796 871 1703 1621 1667 116 116 132 365 247 248

2 Tr( Djhio) V. APPLICATIONS
ic_orr: ind indyq * (32) R ; ;
P+ g+ 9+ (1+gi+g™)] A. Water dimers, comparing DRF with full quantum

. . . . . _ calculations
The final field is also used for the local field corrections in

Egs.(23b) and(230). Already in Ref. 12 we have shown that DRF, in its
Thee in Egs.(27) and(28) is the optical rather than the QM/MM form, reproduces the results of fully quantum
total dielectric constant since experiments for measuring pochemical calculations of the water dimer in various geom-
larizabilities are usually of an optical nature. The same hold$tries fairly well. At that time we did not treat the local fields
indirectly for Eq. (26), where the[ MSML“QQ”JW are also re- explicitly. For easy reference we give here the results of
lated to the optical dielectric constant, although the unpercalculations on similar systems which can be compared with
turbed wave function in this case is of course “solvated” by fully QM calculations. We took two water dimers, one in a
a continuum having the full dielectric constant. parallel, the other in a hydrogen bonded geometry. They
Finally we note that the original reaction figlide., with- ~ were treated in a standard SCF/CPHF procedure, and cor-
out external fielgl and the fields due to the classical point rected for the basis set superposition efBSSE(Ref. 45].
charges have no direct influence on the polarizability butNext we treated the various monomers with the CPHF/DRF
they have an effect on the wave function, of course. procedure as described above with the “other” monomers
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TABLE IV. Some properties of the solventsl: molecular weightd: density;e: dielectric constants:;: effective molecular radiugfrom the density, nD:
refractive indexia (LL): experimental molecular polarizabilify.orentz—Lorenz frormD); a (mode): molecular polarizability from Ref. 40 and the actual
geometry.u: calculated vacuum dipole momem: number of molecules in the cluster simulations.

Solvents M d £ g(c0) r nD a (LL) a (mode) " N

water HO 18.00 0.9982 78.5 1.77654 3.640 1.3329 9.92 10.06 2.23 50
acetonitrile CHCN 41.05 0.7857 37.5 1.80695 5.189 1.3442 29.63 34.28 4.19 40
methanol CHOH 32.04 0.7914 32.0 1.76571 4.766 1.3288 22.02 26.45 2.22 40
ethanol GHsOH 46.07 0.7893 24.3 1.85259 5.384 1.3611 34.56 35.25 1.81 40
acetone GHsCO(l) 58.08 0.7899 20.7 1.84634 5.815 1.3588 43.28 42.81 3.34 40

C,HgCO(g) 58.08 0.0026 1.00220 39.141 1.0011 43.99

1,2-dichloroethane £H,Cl, 98.96 1.2351 10.7 2.08745 5.984 1.4448 57.03 56.04 0.00 40
chloroform CHC} 119.4 1.4830 4.8 2.09063 5.993 1.4459 57.42 57.51 1.14 50
benzene 6Hg 78.12 0.8787 2.3 2.25330 6.195 1.5011 70.09 70.12 0.00 40
dioxane GHgO, 88.12 1.0337 2.2 2.02322 6.109 1.4224 58.00 68.11 0.00 40
tetra CCl 153.82 1.5940 2.2 2.09063 6.366 1.4459 68.83 68.46 0.00 50
cyclohexane 6Hio 84.16 0.7785 2.0 2.03524 6.612 1.4266 74.20 72.44 0.00 40

acting as classical partners. In order to compare the resultfuces a much too large anisotropy and about 50% of the
with the fully QM results the individual DRF results should experimentakv. However this is not the issue here: we want
be added, of course. We used two basis sets: a Sadlefbasiso demonstrate how DRF performs. The left-hand columns of
and a standard DZMRef. 47 basis. Tables Ill(for the Sadlej basjsshow—regarding the simplic-

Usually we expand the inducing and response potentialgy of our model—excellent agreement between fully quan-
and fields around the solute’s atomic cerftésit for larger  tum and DRF calculations. It is important to note that the
basis sets this expansion fails. Therefore we reanimated @SSEs ina and 8 are modest, but they are ipmore sig-
“exact” version of HONDO/DRF*® This version is much nificant. For the DZP basis the BSSEsdnand 3 are still
more demanding on CPU time and storage, e.g., one has @xceptable but those in thg,,, and v,,,, components for
generate, store, and manipulate at least three one-electrtime parallel geometry are much too large, showing that this
matrices for each classical polarizable point for the reactiorasis set is inadequate to arrive at better than qualitative
fields, which turns the use of very large basis sets impractiresults for this property. In the hydrogen bonded complex the
cal. Table Ill summarizes the results obtained with this pro-errors are less dramatic and in particular the averaged intrin-
gram. In this table the most important columns to comparesic properties obtained in the different basis sets is satisfac-
are headed “dimer-BSSE” and “drft drf2.” Components tory. In general we may conclude that our half classical DRF
which are zero by symmetry are omitted. method is able to mimic fully quantum mechanical calcula-

First we note that the Sadlej basis gives for the monometions apparently for any basis set, and that even for sensitive
about 85% of the experimental mean linear polarizabilityhigher order properties discussed here. Hence we trust that
(a) for water (see Table IV. It has about the corredor  DRF can be applied for systems the size of which forbids a
rather lack of anisotropy. In contrast, the DZP basis pro- fully quantum mechanical treatment.

TABLE V. Results for a single solute/solvent configuration of acetone in acétonog

Property aCPHFa araw b Ecorrectedc ?orrected ﬁ.ﬂcorrected Field fact0r§
option X y z
basis Sadlej
vac 38.59 4806 -60.4
drf(discr) nobulk 24.29 30.21 35.99 4211 -6.2 0.83 0.84 0.85
basis dzp
vac 33.35 809 —56.6
drf(bem 63.46 46.21 37.05 998 —63.0 1.23 1.22 1.15
drf(discr) nobulk 21.87 26.42 31.29 390 —-52.9 0.83 0.84 0.85
bulk 28.62 29.82 30.37 476 —40.0 0.97 0.99 0.99
basis dzv
vac 31.99 898 —68.37
drf(bem bem 60.28 44.31 36.88 1120 —76.2 1.23 1.22 1.15
drf(discr) nobulk 19.94 24.62 29.31 646 -59.0 0.83 0.84 0.85
bulk 27.71 28.93 29.06 538 —50.6 0.97 0.99 0.99
Lorentz 48.65 39.63 31.48 837 —84.80 1.26 1.26 1.26
charges only 31.76 890 =77.7 0.0 0.0 0.0

aWith Hamiltonian from Eqs(25), (26), (28) or (30).
bSolute’s electronic contribution, E¢31).

‘From Eq.(32).

“Including induced reaction field.
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continuum and as clusters ¢#0 to 50 discrete classical
molecules. For the continuum model the Poisson’s equations
were solved with the boundary element metiB&EM) (Ref.

42) using the(modified programsGepoL83 (Refs. 49-52
(adapted taHONDO) to construct the boundary between the
solute and the solvent. To define the distance between the
boundary and the atoms, the radii of the initial spheres in
GEPoLaround the atoms were taken as the sum of the atomic
radius at hand and the formal solvent rad{sse Table V.

In the cluster approximation we first performed classical
MD simulations at 298 K usin@rF90 (Ref. 31) with its
polarizable force field for each of the solute/solvent combi-
nations with rigid solute and solvent molecules. The clusters
were constrained to a sphere with a radius chosen such that
the density was approximately that of the experimental sol-
vent density. For technical reasons we kept the solute fixed in
space. After equilibration we selected randomly a hundred
solute/solvent configurations from a 50 ps production run
which were subsequently used in the QM/MM calculations
described in the previous section, using a DZV Bt in
HONDO/DRF. Here we expanded the inducing and response
potentials and fields around the solute’s atomic cerfters.

All model formal atomic charges were taken as dipole
preserving chargé$from vacuumab initio HF-SCF calcu-
lations using a DZP basis $ébn the monomers, while all
atomic radii (when neededwere taken as Frecer’s charge
dependent radii? Polarizabilities were taken from Ref. 40.

In the MD simulations we applied the atomic polarizabilities
for the solute. In all calculations the molecul@roup po-
larizabilities were used for the solvent molecules as obtained
from Ref. 40. An application with the atomic representation
of the solvent polarizability gave no significantly different
results. Although the dispersion is included in the MD simu-
lations, this is neglected in the QM/MM calculations because

the effect on these one-electron properties is expected to be
small?®

VI. RESULTS AND DISCUSSION

First, we present in Table V the results of a single solute/
solvent configuration for acetone in acetone in order to dis-
cuss the effects of various options and basis sets.

Typical values during a run far“""F as they come from
our CPHF HamiltoniarfEq. (25) or (26)]—which contain
the polarization of the classical parts—are also collected in
here, together with the uncorrected'¥") and correctedEqg.
23(a)] solute’s electronic contributiona®"). We note that
the qualitative behavior is the same for all three basis sets,
i.e., @, vy, and|B-u| become smaller in the cluster calcula-

FIG. 3. (a)—(c) CPHF/DRF results for acetone in several solvents with theions. The bulk correction reinforces this effect. In contrast,

DZV basis.

B. (Hyper)polarizabilities of acetone in various
solvents

the continuum result¢so far only obtained for the smaller
basis setschange in the opposite direction. We conclude that
the DZP and DZV basis sets behave similarly, and since the
former takes an order more of CPU time, we decided to use
the latter in the QM/MM calculations for the more than thou-

Here we report mean linear and hyperpolarizabilities ofsand solute/solvent configurations defined above. The last
acetone in eleven solvents spanning a wide range of dielecow of Table V shows that the changeshypeppolarizabili-

tric properties (see Table IV for details The solvents

ties are due to the solute’s polarizable environment. It is

were—in separate calculations—modeled both as a dielectrigatisfying that the large Sadlej basis gives qualitatively the
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TABLE VI. Results(atomic unit3 of QM/MM calculations for various solvents. Averages are over 100 configurations for each solvent.

Solvent model Cluster Continuum
property (Il (a) 7 (B |l a Y Bu
vacuum 1.46 31.99 898 —68.4
dzp 1.32 33.35 802 —56.6
solvent(g)
water (78) 1.76+0.10 30.99-0.62 632-87 —61.5+4.6 1.55 36.56 1015 —76.3
acetonitrile(38) 1.65+0.09 30.850.79 682-88 —58.9+7.3 1.51 36.73 1098 —76.2
methanol(32) 1.73+0.11 30.76:0.50 656-77 —-61.9+5.7 1.52 36.57 1079 -76.2
ethanol(24) 1.65+-0.10 30.49-0.56 670-98 —-61.6£7.5 1.51 36.89 1109 —-76.2
acetoneg(21) 1.72+0.09 30.06:0.91 527116 —61.4+6.4 1.50 36.88 1120 —76.2
dzp 1.58-0.09 31.39-0.88 442+ 119 51.6-5.6 1.38 38.44 998 -62.9
dichloroethang11) 1.63+-0.06 30.1%0.76 63772 —55.6+6.2 1.50 37.57 1145 —76.2
chloroform (4.8 1.61+0.04 30.56-0.87 588+ 89 —-61.1+7.4 1.49 37.58 1152 —-76.1
benzeng?2.3) 1.59+0.07 28.74-1.72 627168 —-60.0+11.5 1.48 37.98 1176 —75.8
dioxane(2.2 1.72+0.09 30.06:0.91 527116 —61.4+6.4 1.47 37.42 1159 —=75.7
tetra(2.2) 1.48+0.01 30.89-0.58 723-75 —57.9+t6.5 1.47 37.59 1167 —-75.8
cyclohexang2.0) 1.49+0.01 30.96:0.58 679-84 —55.1+6.6 1.47 37.45 1164 —75.9

same results, but in. what follows we have to keep in minding as it should in a real solution, bi-u| goes more or less
that the smaller basis sets exaggerate the solvent effects. tg jts vacuum value. In particular with acetonitrile, dichloro-
Application of the Lorentz factor requires—just like in gihane, tetrachloromethane, and cyclohexane as solvents the

other cases—first of all a“solvated” wave function, which average is significantlyi.e., with respect to the rms devia-

means that one has also the “proper” field factors. Since the. o
: ions) smaller than the vacuum value, probably indicating
Lorentz factor for acetone is about the same as the factor far . . .
sufficient sampling and/or persisting solvent structure

the continuum case we do not expect much effect there. Bdf h | hat all ch i
we went through the exercise for the discrete case in th@round the solute. We note that all changesntinuum or

DZV basis—although using othéfimproper”) field factors discrete w.r.t vacuum are not strongly dependent on the sol-
is putting the cart before the horse. The “Lorentz” numbersVvent dielectric constants, which is in contrast to the results of
in Table V show an increase of about 8%dn and about Cammi? Luo,'® and Dehut! For the continuum approach we
60% in|B-u| andy, relative to the “bulk” numbers. Insofar need a fairly large “gap” between the boundary and the at-
as these percentages are correct, the use of Lorentz factams because we do not use a single center, but a distributed
lead indeed to serious errdts. multipole expansioff for (reaction potentials and fields, the

In Fig. 3 and Table VI we report values 6k), (), and  poles of which are closer to the boundary than the solute’s
|B-u. i.e., the averages over the various solute/solvent Consenter of gravity. Hence, the effect of the perturbation by the
figurations from the discrete approach and from the Conxg| ent on the wave function is modest. Next, the external

tinuum modgl. i field is considered to be optical and has approximately the
The continuum results are qualitatively the same as thosgame effect in all solvents since the refractive indices are
coming from similar treatments!:*>%6je., all properties ! v ! Ve ndi

computed are numerically larger than their respectiveapproximately the same. The variations in the cluster results

vacuum values. Local fields are only considered and applie@"® at first sight larger than in the continuum results, but if
in the work of Macacet al®® but they use an expansion for ©ne accounts for the various rms errors no significant solvent

the induced dipolétheir Egs.(8) and(9)] which differs from  dependency emerges. This comes most likely from the com-
our Eq.(21). petition between molecular size and shape on the one hand,
Poulsenet al®"® developed a method which is very and the polarizability(or dielectric constamton the other
much like our(exacy DRF approach, i.e., the solvent is mod- hand of the various solvents. The formal radius defines the
eled either by a continuum or with discrete classical mol-solute/boundary distance in the continuum model, while in
ecules carrying charges and polarizabilities. They find an inyne cluster model they regulate the average distance between

crease in thénonlinear properties in the continuum model g4 te and solvent molecules and the average number of the
and—a smaller—increase in the discrete approach. Howevqratter in the first shells. The change in dipole in Table VI

they use only mean polarizabilities on the solvent molecules. indicati bout h h h ord f .
and the “liquid” is represented by a singléaveraged”) gives an indication about how the zeroth order wave function

configuration. Local fields are mentioned but not considere&hanges on solvation and, for the reasons given abovg, Itis
further. fairly constant as are the perturbations in the external field.

In striking contrast, al(averagegivalues from our dis- Finally, we note that for “acetone in acetone” the polar-
crete approach are smaller than in vacuum. The error mafZability obtained from the experimental refractive index is
gins for the cluster results are the rms deviations over thédeed smaller than in the gas phasee Table IV. The
configurations analyzed. Since we kept the solute fixed irdlifference is much smaller than calculated in the present
space the first hyperpolarizability does not vanish on averagwork, but at least it is consistent.
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