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Polarizabilities in the condensed phase and the local fields problem:
A direct reaction field formulation

Piet Th. van Duijnen,a) Alex H. de Vries, Marcel Swart, and Ferdinand Grozemab)

Theoretical Chemistry, Materials Science Centre, Rijksuniversiteit Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands

~Received 22 October 2001; accepted 13 August 2002!

A consistent derivation is given for local field factors to be used for correcting measured or
calculated static~hyper!polarizabilities in the condensed phases. We show how local fields should be
used in the coupled perturbative Hartree–Fock or finite field methods for calculating these
properties, specifically for the direct reaction field~DRF! approach, in which a quantum chemically
treated ‘‘solute’’ is embedded in a classical ‘‘solvent’’ mainly containing discrete molecules. The
derivation of the local fields is based on a strictly linear response of the classical parts and they are
independent of any quantum mechanical method to be used. In applications to two water dimers in
two basis sets it is shown that DRF matches fully quantum mechanical results quite well. For
acetone in eleven different solvents we find that if the solvent is modeled by only a dielectric
continuum ~hyper!polarizabilities increase with respect to their vacuum values, while with the
discrete model they decrease. We show that the use of the Lorentz field factor for extracting
~hyper!polarizabilities from experimental susceptibilities may lead to serious errors. ©2002
American Institute of Physics.@DOI: 10.1063/1.1512278#
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I. INTRODUCTION

Theoretical and computational studies of nonlinear o
cal ~NLO! properties of molecules are of increasing impo
tance for generating insight into such phenomena at the
croscopic level, and may even lead to the tailoring of NL
materials. Most of these studies address only molecules o
best, single chain oligomers or small clusters of molecu
with or without extrapolations to macroscopic systems.
contrast, most measured properties of matter stem from
periments in some condensed phase, be it in solution o
the solid state. Obviously, spectra and~hyper!polarizabilities
may be, and in general are, quite sensitive to ‘‘environm
tal’’ effects, and to such an extent that correlating experim
tal and theoretical values for such properties is nontrivia

Recently, Bishop1 and Wortmann and Bishop2 addressed
the problem of connecting single-molecule property calcu
tions and actual measurements. They derived local field
tors from an extension of Onsager’s reaction field, i.e.,
simplest of the continuum models for solvating a neut
molecule, but they gave no numerical results. It seems
experimentalists and theoreticians very often rely on t
‘‘molecule in cavity’’ model in order to account for bulk
effects on measured polarizabilities3–6 where the Lorentz
field7 is taken as a local field.

Also, computational efforts to describe solvent effects
~hyper!polarizabilities are dominated by the continuu
approach,8–11 invariably reporting larger~hyper!polarizabili-
ties in solution than in the gas phase. Recently we repeat12
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the PCM~Ref. 13! calculations of Cammiet al.8 on formal-
dehyde in water, and found no appreciable increase in
polarizabilities if the solvent is modeled with discrete mo
ecules. Our conclusion was that if anything happens at
polarizabilities will be reducedon going from the gas to
some condensed phase. More recently, Morita and Ka14

reported similar results for simple systems in water and ot
liquids.

Hence, we have reasons to doubt the validity of the c
tinuum model, in which the molecule of interest~i.e., the
solute! is treated by more or less conventional quantu
chemical methods, while the rest of the universe~the solvent
or the rest of, e.g., a crystal! is modeled by a single param
eter, i.e., the dielectric constant of the bulk material, witho
any reference to the structure in the condensed phase.

Here we do not want to go into all formal and practic
problems associated with mixing microscopic~i.e., the wave
function! and macroscopic~i.e., the dielectric constant!
descriptors.15,16We only note that it is to be expected that th
electronic properties of the solute are largely effected by
first few shells of its neighbors, and the more so the m
structured these shells are. Modeling a solvent with disc
molecules gives rise to many solute–solvent interactio
which are most likely anisotropic and in principle different
each of the many different configurations needed to arr
after averaging over the degrees of freedom, at a ‘‘homo
neous’’ solution. In contrast, the continuum solvent mod
starts with the assumption that the solution is homogene
and calculates interactions between the solute and ‘‘a
aged’’ molecules neglecting the instantaneous anisotro
and specific interactions. The different approaches are bo
to give different results.

Figure 1 illustrates that an electronic charge distribut
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,

2 © 2002 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



at
is

he
o

h
u

he
th
-
at
u
e’

re
lic
n-
e

el
s
o
a
ar
a
im

r
n

te

l
in

he

bil-
tors
po-
d
RF
n

r

-
era-

en-

he

e
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in a cavity in a dielectric is always inflated, because the st
dielectric will always stabilize a more extended charge d
tribution, leading to an increase of its polarizability.

A major problem with the continuum approach is t
definition of the size and shape of the cavity. In Fig. 1 als
model radial distribution,g(r ), of the solvent is shown. If
we want to associate the dielectric with a structureless,
mogeneous continuum, it is clear that the boundary sho
be put at least beyond the first peak ing(r ). This makes the
cavity so large that a neutral solute does not ‘‘feel’’ t
solvent.17 For smaller cavities one has to take care of
‘‘leaking’’ of electron density18–22 and of the solvent struc
ture. The lack of solvent structure, and the fact that a st
dielectric can only stabilize, makes the present continu
models unfit to account for the finer details of the solut
electronic structure.

In the direct reaction field~DRF! approach,23,24 a quan-
tum mechanically treated solute is surrounded by disc
solvent molecules, modeled with point charges and exp
local polarizabilities. Optionally, a dielectric continuum e
veloping the complete system may be added. All charg
i.e., including the solute’s electrons and nuclei, interact s
consistently with each other and with the polarizabilitie
Thus, such calculations mimic at least so-called ‘‘superm
ecule’’ SCF calculations. Hence, in this approach, all ‘‘loc
fields’’—up to the linear response of the classical parts—
accounted for. The degrees of freedom of the discrete p
of any system can be sampled by statistical mechanics s
lations, Monte Carlo~MC! or molecular dynamics~MD!, at
ambient temperatures. By choosing a sufficient numbe
configurations from the MC or MD simulations any solutio
structure can be accounted for. DRF has been implemen24

in HONDO8.1,25 GAMESS~UK!,26 and ZINDO ~Ref. 27! and was
applied—in its QM/MM form—to solvatochroism,28,29 and
to a reactive system,30 while in its completely classica
form31 it is able to reproduce many body effects well
comparison with good quality SCF calculations.32

In this paper we will review some essential parts of t

FIG. 1. An atom or molecule in a cavity of radiusa in a continuum with
dielectric constant«. Vacuum ~—! and ‘‘solvated’’ model wave functions
~---! and a model radial distributiong(r ) for the ‘‘solvent’’ are shown.
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DRF method, discuss what is to be expected for polariza
ities in the condensed phase, and derive local field fac
which can be used for correcting calculated or measured
larizabilities. As applications we report first fully QM an
DRF results for some water dimers in order to see how D
performs, and finally QM/MM results for acetone in eleve
solvents.

II. POLARIZABILITIES OF INTERACTING MOLECULES
AND THE LOCAL FIELDS

Consider a set of points~molecules or atoms! $p% with
polarizabilities $ap% in an electrostatic fieldfp

0. For the
induced dipole momentmp in point p we have33–35

mp5apF fp
01( tpqmqG ~1!

with tpq the dipole–dipole interaction tensors, given by

tpq53~r p2rq!~r p2rq!†/ur p2rqu52I /ur p2rqu3, ~2!

with I the unit matrix. A formal solution for the$mp% can be
found by collecting the 3Npol equations into a single supe
matrix equation of dimension 3Npol33Npol,

M5ã~F01TM !, ~3!

whereF0 andM are 3Npol-dimensional vectors, andã ~i.e.,
the diagonal blocksap) andT ~i.e., the off-diagonal blocks
tpq) are square 3Npol33Npol matrices. Then

A5@ã212T#21 ~4!

is an ordinary polarizability matrix~but of anNpol membered
system!, and

M5AF0. ~5!

The matrixA is obtained either by an exact matrix in
version or the associated linear equations are solved by it
tion. Optionally one may reduce~parts of! A first to ~sub!
group polarizabilities,

amn
G 5(

i , j

NG

~Ai j !mn ; m,nP$x,y,z% ~6!

so as to reduce the dimensionality of the problem.
For easy reference we repeat here that the induction

ergy is given36 as the sum ofUstat52M "F0 and the polar-
ization energyUpol , i.e., the energy needed to create t
induced dipoles,

Upol5E
0

1

F0lMdl5F0M /2 ~7!

yielding

U ind5Ustat1Upol52F0M /252F0AF0/2. ~8!

Combining with Eq.~5! we express this as a sum over th
individual contributions,

U ind52 1
2 (

i
f0mi52 1

2 (
i

f i
0a i f i , ~9!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8444 J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 van Duijnen et al.
which is, due to the self-consistency, quadratic neither in
permanentfields f i

0 nor in thetotal ~local! fields f i . Because
the response of all parts is strictly linear, Eq.~8! can be
written as

U ind52 1
2 (

i
f i
0a i f i

0~11gi ! ~9a!

with the expression in parentheses the local field factor.
Consider two objects with polarizabilitiesa1 and a2 ,

respectively, at a finite distancer 12. Then we get from Eq.
~4!,35 for the components of the total polarizability of th
aggregate, parallel and perpendicular to the line connec
a1 anda2 ,

a i5
a11a214a1a2 /r 12

3

124a1a2 /r 12
6 ;

~10!

a'5
a11a222a1a2 /r 12

3

12a1a2 /r 12
6 ~r 12

6 .4a1a2!.

Even in the case of isotropic polarizabilities,a15a2

5ā, it follows from Eq.~10! that the total polarizability will
obviously be anisotropic. If we want to defineeffectivepo-
larizabilities from Eq.~10! for the members we must~arbi-
trarily!! distribute the interaction term. Fora15a2 , equipar-
titioning could work, leading to local anisotropya i(local)
.ā anda'(local),ā, but foraÞa2 no scheme is obvious
One possibility is weighting the interaction term37 with the
original polarizabilities. This may work better in the gene
case, but it is just as arbitrary. Here the total mean pola
ability ā12 will be larger thanā. In order to find out whether
this holds generally for combining arbitrary~anisotropic! po-
larizabilities in arbitrary relative positions we looked into
number of simple cases. We took two and three~on a line!,
five ~on a square! and seven~on an octahedron! isotropic
polarizabilities (ā'6 Bohr3) separated by at least 8 Boh
@see Fig. 2~a!# and computed their individual and collectiv
behavior. We took this distance because then the treatm
can be completely classical.35 For each cluster first Eq.~4!
was solved and then we applied Eq.~6! to obtain the effec-
tive polarizability components for the individual membe
The interaction parts inA were equipartitioned, i.e., eac
column ofA corresponding to a particular member was co
tracted to a 333 matrix. Results are in Table I.

TABLE I. Effective polarizabilities~in Bohr3! in clusters ofisotropicmono-
mers, from Eq.~4!. Interatomic distance is 8 Bohr throughout.

n Member~s! axx ayy azz ā

1 5.749
2 a 5.881 5.686 5.686 5.751
3 a 6.014 5.622 5.622 5.753

b 5.901 5.678 5.678 5.753
5 a 5.827 5.827 5.601 5.752

ba 5.588 5.588 5.496 5.635
7 a 5.762 5.762 5.762 5.762

bb 5.921 5.699 5.635 5.750

axx andyy values are pairwise interchanged.
bValues are permuted over the six members.
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We see that in each cluster symmetry unique obje
differ in the components of their local polarizabilities. Som
are larger, some are smaller than for the monomer, depen
on the symmetry and the position in the cluster. For isotro
objects on regular lattices the mean local polarizabilities
always larger than for the monomer.

Next, we constructed an anisotropic polarizability b
putting the two polarizabilities of the preceding paragrap
at a distance of 2.3 Bohr following Thole’s recipe,35 contract-
ing the wholeA to a 333 matrix, and assigning the result t
the center of this object. We used this as input for so
simple clusters of anisotropic monomers@see Fig. 2~b!#. Re-
sults~Table II! show that now, depending on the structure
the cluster, not only the polarizability components may
smaller than that of the monomer, but also the mean po
izability. These effects scale in a simple way with the ‘‘in
put’’ polarizabilities as can be seen from Eq.~10!.

In summary, what will happen to local polarizabilities
the condensed phases is hard to estimate without calc
tions. This is also demonstrated by the work of Augspur
and Dykstra38 on acetylene clusters where forlinear com-
plexes anincreaseof the axial components of the linear an
second hyperpolarizabilities are found, while Van Duijn
et al.12 obtain forparallel clusters of butadienes and Kirtma
et al.39 for hexatrienes adecreasein the same properties
These authors also show that well constructed fully class
electrostatic models are able to reproduce these results.

Here we note that only a single polarizability~or suscep-
tibility ! exists for any system. The reconstruction from loc
contributions is in fact an abstraction, the result of whi
depends on the detail wanted~macroscopic with local sus
ceptibilities, or microscopic with local polarizabilities! and—
more importantly—on the partitioning of such propertie
However, experimental chemists are used to such pro
dures: from well chosen series of compounds they de
‘‘bond energies’’ as ‘‘local’’ contributions to heats of forma
tion and ‘‘ionic radii’’ from crystal structures. Theoretica
chemists obtain ‘‘atomic charges’’ from, e.g., a Mullike
analysis of their wave functions and we are able, followi
similar reasoning, to construct molecular polarizabiliti
from atomic ones,35,40 although there is formally no connec
tion between them, and—in an opposite direction—we c
‘‘decompose’’ a many center polarizability matrixA into lo-
cal contributions, in which a one-to-one assignment of
interaction blocks to the corresponding diagonal ‘‘loca
blocks looks like the Mulliken scheme, while a weighte
assignment~e.g., with the traces of the diagonal blocks! will
look like the Löwdin scheme for a population analysis.
this sense we can at least assess the local contributions t
system’s polarizability, although only within an arbitrary b
well defined frame work.

The extension of Eq.~5! with a dielectric continuum
around the discrete part~s! is straightforward. For a dis-
cretized surfaceS @boundary element method~BEM! ~Ref.
41!# the final result can be expressed in a set of linear eq
tion of finite dimensions,42
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FM p

VI
G5A8F fp

vI

2p~11«!
G , ~11!

with in the left-hand side~lhs! vector M representing the
induced dipoles at the classical polarizable points andV the

FIG. 2. ~a! Arrangement of two, three, five, and seven identical isotro
polarizabilities with r 58 Bohr. The monomer polarizability is arbitrar
taken as about 6 Bohr3 @actually 5.88 i.e., the model value for the oxyge
atom ~Ref. 36! in our database#. Letters a, b, and c indicate symmetr
equivalent atoms within each cluster.~b! Arrangement of two and three
identical anisotropic polarizabilities. The monomer anisotropic polarizab
is constructed from two monomers in~a! at 2.3 Bohr. Minimal distance
between objects in the clusters is 8 Bohr.
Downloaded 24 Oct 2002 to 129.125.7.197. Redistribution subject to A
set of induced dipoles on the surfaceS. The right-hand side
~rhs! matrix A8 is given by

A85F ap
211Tpq ¹pK IpSI

2fpI

2p~11«!
12

K IJ

2p~11«!
G21

~12!

with « the ~total! dielectric constant of the continuum. In th
rhs vector all electrostatic source fields~f, at the discrete
polarizable points! and potentials~v, at the representative
points ofS! are collected. In Eq.~12! we have added~redun-
dant! indices for clarity: lower case indices for discrete p
larizable points and capitals for boundary elements. In
top-left block of Eq. ~12b! the matrix of Eq.~4! will be
recognized, whileK and ¹K are more or less complicate
potential and fieldlike kernels, depending on« and the ge-
ometry ofS.

We note that leaving out the continuum just Eq.~4! re-
mains, while for the continuum-only approach only the b
tom right block remains. But the general picture remains
same, i.e., all information about the reaction potentials
contained in a single relay matrix.

III. THE ENERGY EXPRESSIONS
IN THE DRF APPROACH

The DRF approach has been described many tim
elsewhere23,24,43and here we just give some relevant ener
expressions. The total energy of the system can be writte

DUdiscr5DUQM1DUMM1DUQM/MM, ~13!

with DUQM the expectation value of the vacuum Ham
tonian of the QM over the nonvacuum wave function,DUMM

the energy of the classical part~s!, andDUQM/MM the inter-
action in the actual configuration. Here onlyDUQM and the
electronic parts ofDUQM/MM are of importance. The latter i
here given for the discrete case only. Withvsp51/ur p2r su

TABLE II. Effective polarizabilities~in Bohr3! in clusters ofanisotropic
monomers. Monomer constructed from two atoms~see Table I! at a distance
of 2.3 Bohr following Eq.~4!. Interatomic distances between molecul
'6 Bohr. ~Numbers initalics: distances'8 Bohr.)

n Structure Members axx ayy azz ā

1 13.904 9.248 9.248 10.800
2 head to tail a 14.572 9.103 9.103 10.926

14.261 9.171 9.171 10.868
perpendicular a 13.576 9.027 9.901 10.835

13.740 9.139 9.581 10.820
b b 8.916 9.027 14.570 10.838

9.084 9.139 14.240 10.820
skew~45°! a 13.252 8.895 10.076 10.741

13.603 9.087 9.652 10.781
b 10.919 8.894 12.418 10.744

11.274 9.086 11.983 10.781
parallel a 13.121 8.895 9.909 10.642

13.543 9.087 9.570 10.733
3 parallel a 12.344 8.544 10.590 10.493

13.183 8.926 9.896 10.668
b 13.062 8.862 10.062 10.662

13.506 9.069 9.625 10.734
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8446 J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 van Duijnen et al.
the operator for the Coulomb potential atp from a source at
s, and fsp52¹pvsp the corresponding electric field operat
we get

DUel
QM/MM5e(

A,i ,k
qi

A^v~k; i!&1e (
A,i ,k,r ,s

Zi f ir Ars^f(s;k&

1e (
A,i ,k,r ,s

qi
Af ir Ars^f(s;k&

1
e2

2 (
k,l ,r ,s

^f~k;r !&Ars^f~s; l !&, ~14!

where the$Z% are the nuclear charges, the$q% the classical
charges, and̂¯& denote expectation values over molecu
orbitals ~MOs!. The Ars are block matrix elements relatin
polarizable points atr ands of the matrixA ~i.e., A or A8,
see above!, which maps the linear response functions of t
classical parts. In all inductive contributions the polarizati
‘‘cost’’ energy is here included, although we keep it in pra
tice separated in order to make it also possible to deal w
nonequilibrium situations. For clarity we have made expli
the electronic charge~e! and the electron~or, rather MO!
labels~k,l! in the potential and field expectation values.

IV. SYSTEM IN AN EXTERNAL FIELD

If a system is placed in an external electrostatic fieldf,
the change in energy can be expanded as

DU~ f!52S m i
0f i1

1

2!
a i j f i f j1

1

3!
b i jk f i f j fk

1
1

4!
g i jkl f i f j fkf l1¯ D ; $ i , j ,k%P$x,y,z%,

~15!

with m0 the permanent dipole moment,a the polarizability
tensor, andb andg the first and second hyperpolarizabilitie
of the system. The indices are summed over~all permuta-
tions of! the Cartesian axesx, y, andz.

One can use Eq.~15! by applying various field strength
and determine numerically the derivatives ofDU(f) to ob-
tain the dipole moment and the~hyper!polarizabilities. This
finite field ~FF! approach is applicable to any type of wa
function for QM. For closed shell, single determinant wa
functions, the coupled perturbative Hartree–Fock~CPHF!
~Ref. 44! method is a good alternative which is genera
faster. The first and second derivatives of the total energ
QM ~in the Born–Oppenheimer approximation! in vacuum
w.r.t. the components of the fieldf are

]@DU~ f!#
] f i

52^m i
tot&;

]2@DU~ f!#
] f i] f j

52e
]^m i

el&
] j

[a i j ,

~16!

with m tot the total dipole moment andmel the electronic con-
tribution. In CPHF, applied to a molecule in vacuum, o
takes the electronic part of the first derivative ofDU(f) as
the perturbing Hamiltonian,

hmn
i [2e~mmn

0 ! i ~17!
Downloaded 24 Oct 2002 to 129.125.7.197. Redistribution subject to A
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with m the dipole operator,e the elementary charge, whil
m,n refer to basis functions. For the first and second fi
derivatives of the wave function we write25

]C

] f i
[uC i&;

]2C

] f i] f j
[uC i j &, ~18a!

then we can construct the following density matrices,

D05uC0&^C0u; Dj5uC j&^C0u,
~18b!

Djk5uC j&^Cku; Djkl5uC j&^Cklu,

where it is assumed that contributions obtained by permu
the indices are summed. Then we have to fourth order,

m i
el5Tr~D0hi !; a i j 5Tr~Djhi !,

~19!
b i jk5Tr~Djkhi !; g i jkl 5Tr~Djklhi !.

Both approaches, FF and CPHF are easily extende
the DRF method. If we write for the solute’s contribution
the change in total energy,

~DUDRF
solute~ f!! i52@mDRF

solute1mQM/MM# i f i1¯

52@mDRF
solute1mQM/MM# i f i

ext~11gi !1¯

~20!

with f the local field at QM andmQM/MM stands for all di-
poles induced by the solute in the classical parts, it will
clear that the perturbing operator for CPHF must be adap
to reflect the use of the actual field at QM. For FF it is on
needed to add the external field to the sources in Eq.~12a!
and solve the resulting linear equations.

From Eq.~8! we obtain for the solute’s contribution t
the total induction energy,

~U ind
solute! i j 52 1

2 f i
ext$a i j

eff% f j

52 1
2 f i

ext$a i j 1
1
3@b i jk1 1

4g i jkl f l # f k% f j

52 1
2 f i

ext$a i j 1
1
3@b i jk1 1

4g i jkl f l
ext~11gl !#

3 f k
ext~11gk!% f j

ext~11gj ! ~21!

andU ind should be expanded in the variousf ext(11g) rather
than in f ext itself when using the FF method.

Since we require the usual symmetry for the~hyper!po-
larizabilities,

a i j 5a j i ; b i jk5bki j5b jki5¯ ;
~22!

g i jkl 5g l i jk 5gkli j 5g jkl i 5¯ ,

the local field factors are obtained from the following expre
sions:

]2U ind
solute

] f i] f j
52

1

2
@a i j ~11gj !1a j i ~11gi !#

52
a i j

2
@~11gj !1~11gi !#, ~23a!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]3U ind
solute

] f i] f j] f k
52

1

3
@b i jk~11gj !~11gk!1bki j~11gi !~11gj !

1b jki~11gi !~11gk!1¯#

52
b i jk

3
@~11gj !~11gk!

1~11gi !~11gk!1~11gi !~11gj !#, ~23b!

]4U ind
solute

] f i] f j] f k] f k
52

1

4
@g i jkl ~11gl !~11gk!~11gj !

1g l i jk ~11gk!~11gj !~11gi !1¯#

52
g i jkl

4
@~11gj !~11gk!~11gl !

1~11gi !~11gk!~11gl !1~11gi !~11gj !

3~11gl !1~11gi !~11gj !~11gk!#. ~23c!

The $g% in Eqs.~23! depend on the actual partitioning o
the system, on its geometry and the particular point~s! for
which the fields are to be evaluated. Obviously one can
culateg’s for any point, but only the assumed center of t
electric moments and polarizabilities of QM is needed,
which usually the center of mass is chosen. We note that
dipole moment for a neutral molecule and all polarizabilit
are origin independent. For example, take two different c
ters,R andX, for evaluating the dipole integrals. Then, e.
for the linear polarizability one has

a i j ~R!5Tr~Djhi~R!!5(
m,n

Dmn
j hnm

i ~R!,

a i j ~R8!5Tr~Djhi~R8!!

5(
m,n

Dmn
j @hnm

i ~R!2~Ri2Xi !Snm#

5Tr~Djhi~R!!2~Ri2Xi !Tr~DjS!

5Tr~Djhi~R!!, ~24!

with S the overlap matrix. Tr(DjS) is the~field! derivative of
the number of electrons, which is obviously zero.

The actualg’s to be calculated also depend on the co
stituents of the complete system. For a DRF cluster
vacuumfext resides in the vacuum and the solute’s electro
feel this field modulated by the fields from the induced
poles at the classical polarizabilities, while the dipoles
duced by QM only feelfext. Hence we have for the perturb
ing operator,

~hmn!DRF
i 52e$~mmn

i ~11gi
discrete!1@mdiscrete

QM/MM#mn!%,
~25!

where the@mdiscrete
QM/MM#mn are the integrals defining the dipole

induced by QM at the discrete polarizabilities. If a co
tinuum is present we assume thatfext resides in that con-
tinuum, leading to

~hmn!DRF
i 52e$~mmn

i ~11gi
discrete!1@mdiscrete

QM/MM#mn!

3~11gi
boundary!1@mboundary

QM/MM #mn% ~26!
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since all charge distributions inside the cavity feel the fie
from the continuum polarization, while the dipoles induc
on the boundary, represented by the@mboundary

QM/MM #mn integrals,
feel only fext. All necessary ingredients for calculating th
g’s referring to any point are available after solving the a
propriate linear equations with appropriate source fields.

Thegi
boundarydepend on the shape of cavity. For a sphe

cal cavity the fieldfcav due to the polarization of the con
tinuum, inside this cavity is uniform and parallel tofext, and
is given by7

fcav5@3«/~2«11!#fext5~11gcav!fext;
~27!

gcav5~«21!/~2«11!.

We note that for a sizable, practically spherical, discrete c
ter the QM part does not generate appreciable induced
poles on the boundary, so we can usefcav directly without the
continuum being actually present, in which case Eq.~30! is
reduced to

~hmn!DRF
i 52e$~mmn

i ~11gi
discrete!1@mdiscrete

QM/MM#mn!

3~11gi
cav!% ~28!

which will enable one to apply this as a ‘‘bulk correction’’ t
any cluster of roughly spherical shape.

The Lorentz field7 is often used for correcting measure
susceptibilities with

f lorentz5
«12

3
; glorentz5

«21

3
~29!

for all directions and disregarding all actual local polariz
tions. In the derivation of Eq.~29! it is assumed that the
~macroscopic!! system is uniformly polarized, and henc
formally, the Lorentz field is only applicable for pure su
stances. However it is a rather crude approximation and m
lead to substantial errors,2 in particular in the microscopic
description we have in mind. We have

~hmn!DRF
i 52e$mmn

i ~11glorentz!%. ~30!

From the CPHF calculations one obtains, using the p
turbation from Eq.~25!, ~26!, or ~27!, a linear polarizability
aCPHF which contains the polarizations of the classical pa
From the associated density matrices the solute’s electr
contributions is calculated and corrected by applying the
propriate field factors of Eq.~23a!,

a i j
raw5

2 Tr~Djh0
i !

@~11gj !1~11gi !#
, ~31!

where the zero in Eq.~31! emphasizes that only the vacuu
dipole integrals of QM are used. On the resultinga raw the
total field on QM is first applied to obtain the dipole induce
by this field which is present in the self consistent solution
the CPHF/DRF procedure because of the presence of te
like @mdiscrete

QM/MM#mn in the perturbing operator. Then the corr
sponding reaction field is obtained by solving Eq.~12! with
this induced dipole as only source. This reaction field, yie
ing gind, is added to the total field at QM and thena raw is
corrected again with this final field,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Comparison of full quantum and~exact! DRF calculations for two water dimers using two basis sets. The first molecule is in theZ50 plane with
its dipole moment along theY-axis. Left-hand columns: Sadlej basis~Ref. 46!; right-hand columns DZP basis~Ref. 47!. Point charges on the classica
molecules reproduce the monomer vacuum dipole moment. For the classical molecular polarizability the calculated vacuum monomer tensor wal
data in atomic units.~top! Parallel dimer constructed by shifting an image of the monomer by 5 Bohr in theZ-direction.~bottom! Hydrogen bonded water
dimer constructed by shifting an image of the monomer by 5.325 Bohr in the OH direction. Parameter as above.

Property mono drf~1! drf~2! dimer BSSE
dimer-
BSSE

drf
(112) mono drf~1! drf~2! dimer BSSE

dimer-
BSSE drf (112)

my 20.79 20.74 20.74 21.48 0.0 21.48 21.48 20.89 20.85 20.85 21.69 0.0 21.69 21.70
axx 9.40 8.83 8.83 17.95 20.01 17.96 17.66 7.43 7.20 7.20 14.70 0.16 14.54 14.40
ayy 8.66 8.13 8.13 16.50 20.02 16.52 16.26 5.59 5.44 5.44 11.01 0.11 10.90 10.89
azz 7.90 8.68 8.68 16.22 0.08 16.14 17.36 3.03 3.16 3.16 7.37 2.22 5.15 6.31
ā 8.65 16.89 16.87 17.09 5.35 5.27 5.27 11.02 10.20 10.54

bxxy 10.5 11.1 11.1 21.3 0.3 21.0 22.2 20.8 20.1 20.1 39.0 0.22 38.8 40.1
byyy 5.1 8.4 8.4 16.6 2.0 14.6 16.8 10.0 9.9 9.9 18.520.27 18.7 19.8
byzz 20.6 1.5 1.5 5.1 1.3 3.8 3.0 0.6 0.8 0.8 3.5 0.7 2.8 1.6
by 9.0 12.6 12.6 25.8 23.6 25.2 18.9 18.4 18.4 36.6 36.2 36.9

b"m 27.1 238.2 235.0 237.3 216.7 215.7 215.7 261.7 261.3 262.9
gxxxx 501 470 470 974 62 912 940 192 179 179 320 3 317 357
gxxyy 292 273 273 553 23 530 546 140 132 132 238 2 236 264
gxxzz 296 280 280 626 41 585 560 11 12 12 69 111 242 24
gyyyy 790 736 736 1551 124 1427 1472 61 58 58 99 0 99 117
gyyzz 331 311 311 702 60 641 621 6 7 7 29 61 232 14
gzzzz 1223 1501 1501 3246 299 2947 3002 12 14 14 728 13992671 28

ḡ 871 1906 1759 1773 116 110 110 364 14 221

mx 0.00 20.05 0.00 0.13 0.00 0.13 20.05 0.00 0.00 0.06 0.12 0.00 0.12 0.06
my 20.79 20.82 20.79 21.62 0.00 21.62 21.60 20.89 20.89 20.90 21.82 0.00 21.82 21.79
axx 9.41 9.68 9.40 19.29 20.01 19.30 19.08 7.43 7.44 7.71 15.39 0.21 15.18 15.15
ayy 8.66 8.66 8.66 17.45 0.01 17.44 17.32 5.59 5.59 5.67 11.60 0.31 11.29 11.2
azz 7.90 7.48 7.90 15.16 0.05 15.11 15.38 3.03 3.03 3.00 5.98 0.05 5.94 6.03
ā 8.66 8.61 8.65 17.30 17.28 17.26 5.35 5.35 5.46 10.99 10.80 10.81

bxxx 0.0 20.6 0.0 2.8 0.0 2.8 20.6 0.0 0.0 21.0 1.1 1.1 0.0 21.0
bxxy 10.5 8.1 10.5 19.1 20.2 19.3 18.6 20.8 20.8 22.5 37.7 22.0 39.6 43.4
bxyy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bxzz 0.0 21.6 0.0 0.7 0.0 0.7 21.6 0.0 0.0 20.7 2.2 1.7 0.5 20.7
byyy 5.1 5.7 5.1 11.1 1.4 9.7 10.8 10.0 10.0 10.2 18.9 1.4 17.5 20.2
byzz 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bx 0.0 21.1 0.0 3.0 3.1 21.1 0.0 0.0 20.8 1.9 0.4 20.8
by 9.0 8.6 9.0 17.5 16.5 17.6 18.8 18.9 19.9 34.6 34.8 38.8

b"m 27.1 26.9 27.1 227.9 226.3 228.1 216.7 216.8 218.0 262.7 263.4 269.5
gxxxx 502 508 501 1069 40 1029 1009 192 193 230 552 116 436 423
gxxyy 293 306 292 636 1 635 598 140 140 159 437 114 323 300
gxxzz 296 262 296 548 32 516 559 11 11 11 20 7 13 22
gyyyy 791 730 790 1614 76 1539 1520 61 61 65 311 216 96 126
gyyzz 331 284 331 603 24 579 615 6 6 6 13 7 6 12
gzzzz 1224 1037 1223 2256 177 2079 2261 12 12 12 23 2 22 24

ḡ 872 796 871 1703 1621 1667 116 116 132 365 247 248
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corr5

2 Tr~Djh0
i !

@~11gj1gj
ind!1~11gi1gi

ind!#
. ~32!

The final field is also used for the local field corrections
Eqs.~23b! and ~23c!.

The« in Eqs.~27! and~28! is the optical rather than th
total dielectric constant since experiments for measuring
larizabilities are usually of an optical nature. The same ho
indirectly for Eq. ~26!, where the@mboundary

QM/MM #mn are also re-
lated to the optical dielectric constant, although the unp
turbed wave function in this case is of course ‘‘solvated’’
a continuum having the full dielectric constant.

Finally we note that the original reaction field~i.e., with-
out external field! and the fields due to the classical poi
charges have no direct influence on the polarizability
they have an effect on the wave function, of course.
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V. APPLICATIONS

A. Water dimers, comparing DRF with full quantum
calculations

Already in Ref. 12 we have shown that DRF, in i
QM/MM form, reproduces the results of fully quantum
chemical calculations of the water dimer in various geo
etries fairly well. At that time we did not treat the local field
explicitly. For easy reference we give here the results
calculations on similar systems which can be compared w
fully QM calculations. We took two water dimers, one in
parallel, the other in a hydrogen bonded geometry. Th
were treated in a standard SCF/CPHF procedure, and
rected for the basis set superposition error@BSSE~Ref. 45!#.
Next we treated the various monomers with the CPHF/D
procedure as described above with the ‘‘other’’ monom
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Some properties of the solvents.M: molecular weight;d: density;«: dielectric constants;r: effective molecular radius~from the density!; nD:
refractive index:ā ~LL !: experimental molecular polarizability~Lorentz–Lorenz fromnD!; ā ~model!: molecular polarizability from Ref. 40 and the actu
geometry.m: calculated vacuum dipole moment:N: number of molecules in the cluster simulations.

Solvents M d « «~`! r nD ā ~LL ! ā ~model! m N

water H2O 18.00 0.9982 78.5 1.77654 3.640 1.3329 9.92 10.06 2.23 5
acetonitrile CH3CN 41.05 0.7857 37.5 1.80695 5.189 1.3442 29.63 34.28 4.19 4
methanol CH3OH 32.04 0.7914 32.0 1.76571 4.766 1.3288 22.02 26.45 2.22 4
ethanol C2H5OH 46.07 0.7893 24.3 1.85259 5.384 1.3611 34.56 35.25 1.81 4
acetone C2H6CO~l! 58.08 0.7899 20.7 1.84634 5.815 1.3588 43.28 42.81 3.34 4

C2H6CO~g! 58.08 0.0026 1.00220 39.141 1.0011 43.99
1,2-dichloroethane C2H4Cl2 98.96 1.2351 10.7 2.08745 5.984 1.4448 57.03 56.04 0.00 4
chloroform CHCl3 119.4 1.4830 4.8 2.09063 5.993 1.4459 57.42 57.51 1.14 5
benzene C6H6 78.12 0.8787 2.3 2.25330 6.195 1.5011 70.09 70.12 0.00 4
dioxane C4H8O2 88.12 1.0337 2.2 2.02322 6.109 1.4224 58.00 68.11 0.00 4
tetra CCl4 153.82 1.5940 2.2 2.09063 6.366 1.4459 68.83 68.46 0.00 5
cyclohexane C6H12 84.16 0.7785 2.0 2.03524 6.612 1.4266 74.20 72.44 0.00 4
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acting as classical partners. In order to compare the res
with the fully QM results the individual DRF results shou
be added, of course. We used two basis sets: a Sadlej ba46

and a standard DZP~Ref. 47! basis.
Usually we expand the inducing and response poten

and fields around the solute’s atomic centers24 but for larger
basis sets this expansion fails. Therefore we reanimate
‘‘exact’’ version of HONDO/DRF.48 This version is much
more demanding on CPU time and storage, e.g., one ha
generate, store, and manipulate at least three one-ele
matrices for each classical polarizable point for the reac
fields, which turns the use of very large basis sets impra
cal. Table III summarizes the results obtained with this p
gram. In this table the most important columns to comp
are headed ‘‘dimer-BSSE’’ and ‘‘drf11drf2.’’ Components
which are zero by symmetry are omitted.

First we note that the Sadlej basis gives for the monom
about 85% of the experimental mean linear polarizabi
(ā) for water ~see Table IV!. It has about the correct~or
rather lack of! anisotropy. In contrast, the DZP basis pr
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duces a much too large anisotropy and about 50% of
experimentalā. However this is not the issue here: we wa
to demonstrate how DRF performs. The left-hand columns
Tables III~for the Sadlej basis! show—regarding the simplic
ity of our model—excellent agreement between fully qua
tum and DRF calculations. It is important to note that t
BSSEs ina and b are modest, but they are ing more sig-
nificant. For the DZP basis the BSSEs ina and b are still
acceptable but those in thegxxzz and gzzzz components for
the parallel geometry are much too large, showing that
basis set is inadequate to arrive at better than qualita
results for this property. In the hydrogen bonded complex
errors are less dramatic and in particular the averaged in
sic properties obtained in the different basis sets is satis
tory. In general we may conclude that our half classical D
method is able to mimic fully quantum mechanical calcu
tions apparently for any basis set, and that even for sens
higher order properties discussed here. Hence we trust
DRF can be applied for systems the size of which forbid
fully quantum mechanical treatment.
TABLE V. Results for a single solute/solvent configuration of acetone in acetone~a.u.!.

Property āCPHFa ā raw b ācorrectedc ḡcorrected b"mcorrected Field factorsd

option x y z
basis Sadlej
vac 38.59 4806 260.4

drf~discr.! nobulk 24.29 30.21 35.99 4211 26.2 0.83 0.84 0.85

basis dzp
vac 33.35 809 256.6

drf~bem! 63.46 46.21 37.05 998 263.0 1.23 1.22 1.15
drf~discr.! nobulk 21.87 26.42 31.29 390 252.9 0.83 0.84 0.85

bulk 28.62 29.82 30.37 476 240.0 0.97 0.99 0.99

basis dzv
vac 31.99 898 268.37

drf~bem! bem 60.28 44.31 36.88 1120 276.2 1.23 1.22 1.15
drf~discr.! nobulk 19.94 24.62 29.31 646 259.0 0.83 0.84 0.85

bulk 27.71 28.93 29.06 538 250.6 0.97 0.99 0.99
Lorentz 48.65 39.63 31.48 837 284.80 1.26 1.26 1.26

charges only 31.76 890 277.7 0.0 0.0 0.0

aWith Hamiltonian from Eqs.~25!, ~26!, ~28! or ~30!.
bSolute’s electronic contribution, Eq.~31!.
cFrom Eq.~32!.
dIncluding induced reaction field.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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B. „Hyper …polarizabilities of acetone in various
solvents

Here we report mean linear and hyperpolarizabilities
acetone in eleven solvents spanning a wide range of die
tric properties ~see Table IV for details!. The solvents
were—in separate calculations—modeled both as a diele

FIG. 3. ~a!–~c! CPHF/DRF results for acetone in several solvents with
DZV basis.
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continuum and as clusters of~40 to 50! discrete classica
molecules. For the continuum model the Poisson’s equat
were solved with the boundary element method~BEM! ~Ref.
42! using the~modified! programsGEPOL83 ~Refs. 49–52!
~adapted toHONDO! to construct the boundary between th
solute and the solvent. To define the distance between
boundary and the atoms, the radii of the initial spheres
GEPOLaround the atoms were taken as the sum of the ato
radius at hand and the formal solvent radius~see Table IV!.

In the cluster approximation we first performed classi
MD simulations at 298 K usingDRF90 ~Ref. 31! with its
polarizable force field for each of the solute/solvent com
nations with rigid solute and solvent molecules. The clust
were constrained to a sphere with a radius chosen such
the density was approximately that of the experimental s
vent density. For technical reasons we kept the solute fixe
space. After equilibration we selected randomly a hund
solute/solvent configurations from a 50 ps production r
which were subsequently used in the QM/MM calculatio
described in the previous section, using a DZV basis47 set in
HONDO/DRF. Here we expanded the inducing and respo
potentials and fields around the solute’s atomic centers.24

All model formal atomic charges were taken as dipo
preserving charges53 from vacuumab initio HF-SCF calcu-
lations using a DZP basis set47 on the monomers, while al
atomic radii ~when needed! were taken as Frecer’s charg
dependent radii.54 Polarizabilities were taken from Ref. 40
In the MD simulations we applied the atomic polarizabiliti
for the solute. In all calculations the molecular~group! po-
larizabilities were used for the solvent molecules as obtai
from Ref. 40. An application with the atomic representati
of the solvent polarizability gave no significantly differe
results. Although the dispersion is included in the MD sim
lations, this is neglected in the QM/MM calculations becau
the effect on these one-electron properties is expected t
small.29

VI. RESULTS AND DISCUSSION

First, we present in Table V the results of a single solu
solvent configuration for acetone in acetone in order to d
cuss the effects of various options and basis sets.

Typical values during a run forāCPHFas they come from
our CPHF Hamiltonian@Eq. ~25! or ~26!#—which contain
the polarization of the classical parts—are also collected
here, together with the uncorrected (ā raw) and corrected@Eq.
23~a!# solute’s electronic contribution (ācorr). We note that
the qualitative behavior is the same for all three basis s
i.e., ā, ḡ, and ub"mu become smaller in the cluster calcul
tions. The bulk correction reinforces this effect. In contra
the continuum results~so far only obtained for the smalle
basis sets! change in the opposite direction. We conclude th
the DZP and DZV basis sets behave similarly, and since
former takes an order more of CPU time, we decided to
the latter in the QM/MM calculations for the more than tho
sand solute/solvent configurations defined above. The
row of Table V shows that the changes in~hyper!polarizabili-
ties are due to the solute’s polarizable environment. It
satisfying that the large Sadlej basis gives qualitatively
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE VI. Results~atomic units! of QM/MM calculations for various solvents. Averages are over 100 configurations for each solvent.

Solvent model Cluster Continuum

property ^umu& ^ā& ^ḡ& ^b"m& umu ā ḡ b"m
vacuum 1.46 31.99 898 268.4

dzp 1.32 33.35 802 256.6
solvent~«!
water ~78! 1.7660.10 30.9960.62 632687 261.564.6 1.55 36.56 1015 276.3
acetonitrile~38! 1.6560.09 30.8560.79 682688 258.967.3 1.51 36.73 1098 276.2
methanol~32! 1.7360.11 30.7660.50 656677 261.965.7 1.52 36.57 1079 276.2
ethanol~24! 1.6560.10 30.4960.56 670698 261.667.5 1.51 36.89 1109 276.2
acetone~21! 1.7260.09 30.0660.91 5276116 261.466.4 1.50 36.88 1120 276.2

dzp 1.5860.09 31.3960.88 4426119 51.665.6 1.38 38.44 998 262.9
dichloroethane~11! 1.6360.06 30.1760.76 637672 255.666.2 1.50 37.57 1145 276.2
chloroform ~4.8! 1.6160.04 30.5660.87 588689 261.167.4 1.49 37.58 1152 276.1
benzene~2.3! 1.5960.07 28.7461.72 6276168 260.0611.5 1.48 37.98 1176 275.8
dioxane~2.2! 1.7260.09 30.0660.91 5276116 261.466.4 1.47 37.42 1159 275.7
tetra ~2.2! 1.4860.01 30.8960.58 723675 257.966.5 1.47 37.59 1167 275.8
cyclohexane~2.0! 1.4960.01 30.9060.58 679684 255.166.6 1.47 37.45 1164 275.9
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same results, but in what follows we have to keep in m
that the smaller basis sets exaggerate the solvent effect

Application of the Lorentz factor requires—just like i
other cases—first of all a‘‘solvated’’ wave function, whic
means that one has also the ‘‘proper’’ field factors. Since
Lorentz factor for acetone is about the same as the facto
the continuum case we do not expect much effect there.
we went through the exercise for the discrete case in
DZV basis—although using other~‘‘improper’’ ! field factors
is putting the cart before the horse. The ‘‘Lorentz’’ numbe
in Table V show an increase of about 8% inā, and about
60% in ub"mu andḡ, relative to the ‘‘bulk’’ numbers. Insofar
as these percentages are correct, the use of Lorentz fa
lead indeed to serious errors.2

In Fig. 3 and Table VI we report values of^ā&, ^ḡ&, and
ub"mu, i.e., the averages over the various solute/solvent c
figurations from the discrete approach and from the c
tinuum model.

The continuum results are qualitatively the same as th
coming from similar treatments,8,11,55,56 i.e., all properties
computed are numerically larger than their respect
vacuum values. Local fields are only considered and app
in the work of Macacet al.56 but they use an expansion fo
the induced dipole@their Eqs.~8! and~9!# which differs from
our Eq.~21!.

Poulsenet al.57,58 developed a method which is ver
much like our~exact! DRF approach, i.e., the solvent is mo
eled either by a continuum or with discrete classical m
ecules carrying charges and polarizabilities. They find an
crease in the~non!linear properties in the continuum mod
and—a smaller—increase in the discrete approach. Howe
they use only mean polarizabilities on the solvent molecu
and the ‘‘liquid’’ is represented by a single~‘‘averaged’’!
configuration. Local fields are mentioned but not conside
further.

In striking contrast, all~averaged! values from our dis-
crete approach are smaller than in vacuum. The error m
gins for the cluster results are the rms deviations over
configurations analyzed. Since we kept the solute fixed
space the first hyperpolarizability does not vanish on ave
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ing as it should in a real solution, butub"mu goes more or less
to its vacuum value. In particular with acetonitrile, dichlor
ethane, tetrachloromethane, and cyclohexane as solvent
average is significantly~i.e., with respect to the rms devia
tions! smaller than the vacuum value, probably indicati
insufficient sampling and/or persisting solvent structu
around the solute. We note that all changes~continuum or
discrete! w.r.t vacuum are not strongly dependent on the s
vent dielectric constants, which is in contrast to the results
Cammi,8 Luo,10 and Dehu.11 For the continuum approach w
need a fairly large ‘‘gap’’ between the boundary and the
oms because we do not use a single center, but a distrib
multipole expansion24 for ~reaction! potentials and fields, the
poles of which are closer to the boundary than the solu
center of gravity. Hence, the effect of the perturbation by
‘‘solvent’’ on the wave function is modest. Next, the extern
field is considered to be optical and has approximately
same effect in all solvents since the refractive indices
approximately the same. The variations in the cluster res
are at first sight larger than in the continuum results, bu
one accounts for the various rms errors no significant solv
dependency emerges. This comes most likely from the c
petition between molecular size and shape on the one h
and the polarizability~or dielectric constant! on the other
hand of the various solvents. The formal radius defines
solute/boundary distance in the continuum model, while
the cluster model they regulate the average distance betw
solute and solvent molecules and the average number o
latter in the first shells. The change in dipole in Table
gives an indication about how the zeroth order wave funct
changes on solvation and, for the reasons given above,
fairly constant as are the perturbations in the external fie

Finally, we note that for ‘‘acetone in acetone’’ the pola
izability obtained from the experimental refractive index
indeed smaller than in the gas phase~see Table IV!. The
difference is much smaller than calculated in the pres
work, but at least it is consistent.
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VII. SUMMARY AND CONCLUSIONS

We have developed a consistent scheme for compu
~hyper!polarizabilities for quantum chemically treated sy
tems embedded in a classical environment modeling s
condensed phase in the frame work of our DRF method
ing into account the effect of local fields. The method—w
its discrete solvent molecules—is generous to important
croscopic details like the instantaneous anisotropies in
solute–solvent interactions. Macroscopically homogene
solutions were simulated by generating many solute–solv
configurations which were subject to QM/MM calculatio
to obtain properties over which was averaged. The results
more or less drastically different from approaches in wh
first the solvent is assumed to be homogeneous~continuum
methods! or where first an ‘‘average configuration’’ is de
fined. Because of the sheer number of QM/MM calculatio
necessary in this approach we had to use a basis set th
~too! small for in particular the second hyperpolarizabilit
Hence our results are only qualitative, but they lead for
etone in eleven very different solvents systematically to~hy-
per!polarizabilities which are smaller than the gas phase
ues if the first few solvent shells are treated explicitly,
contrast to continuum solvent models. We present some
dence that the usual Lorentz field factor, more or less us
in extracting hyperpolarizabilities from experimental susc
tibilities, may introduce errors of 50% or more.

We solved the local fields problem within the approx
mation that the response of the classical parts is strictly
ear. We consider this not a serious restriction since hig
order interactions tend to be rather small, in particular
liquids. Because of this assumed linear response, all l
field factors can be obtained from a set of linear equations
applying a unit external field prior to any quantum chemi
calculation. In fact,~model! local field factors could be cal
culated for correcting experimental results as long as rea
able information about structures is available.

For this paper we used only the coupled perturbat
Hartree–Fock method, but the local field corrections are g
erally applicable, i.e., also for wave functions for whic
CPHF cannot be used or in finite field calculations.

We will in the near future develop a method to tre
frequency dependent polarizabilities along the same line
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7C. J. F. Böttcher and P. Bordewijk,Theory of Electric Polarization
~Elsevier, Amsterdam, 1978!.

8R. Cammi, M. Cossi, and J. Tomasi, J. Chem. Phys.104, 4611~1996!.
Downloaded 24 Oct 2002 to 129.125.7.197. Redistribution subject to A
g

e
k-

i-
e
s

nt

re
h

s
t is

-

l-

vi-
al
-

-
er
n
al
y
l

n-

e
n-

t

9R. Cammi, M. Cossi, B. Mennucci, and J. Tomasi, J. Chem. Phys.105,
10556~1996!.

10Y. Luo, P. Norman, and H. A˚ gren, J. Chem. Phys.109, 3589~1998!.
11C. Dehu, V. Geskin, A. Persoons, and J.-L. Bre´das, Eur. J. Org. Chem

1998, 1267.
12P. Th. van Duijnen, M. Swart, and F. Grozema, inACS Symposium Series,

edited by J. Gao and M. A. Thompson~ACS, Washington, D.C., 1998!,
Vol. 712, p. 220.

13J. Tomasi and M. Persico, Chem. Rev.94, 2027~1994!.
14A. Morita and S. Kato, J. Chem. Phys.110, 11987~1999!.
15A. H. de Vries, P. Th. van Duijnen, and A. H. Juffer, Int. J. Quantu

Chem., Quantum Chem. Symp.27, 451 ~1993!.
16P. Th. van Duijnen and A. H. de Vries, Int. J. Quantum Chem., Quan

Chem. Symp.29, 523 ~1995!.
17S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys.55, 117 ~1981!.
18D. M. Chipman, J. Chem. Phys.104, 3276~1996!.
19D. M. Chipman, J. Chem. Phys.106, 10194~1997!.
20C-G. Zhan and D. M. Chipman, J. Chem. Phys.109, 10543~1998!.
21D. M. Chipman, J. Chem. Phys.110, 8012~1999!.
22D. M. Chipman, J. Chem. Phys.112, 5558~2000!.
23B. T. Thole and P. Th. van Duijnen, Theor. Chim. Acta55, 307 ~1980!.
24A. H. de Vries, P. Th. van Duijnen, A. H. Juffer, J. A. C. Rullmann, J.

Dijkman, H. Merenga, and B. T. Thole, J. Comput. Chem.16, 37
~1995!.

25M. Dupuis, A. Farazdel, S. P. Karma, and S. A. Maluendes, inMOTECC-
90, edited by E. Clementi~ESCOM, Leiden, 1990!, Vol. 277.

26M. F. Guest, J. H. van Lenthe, J. Kendrick, and P. Sherwood,GAMESS~UK!

~6.2! ~Daresbury Laboratory, Cheshire, England, 1999!.
27M. C. Zerner,ZINDO, A General Semiempirical Program Package~Quan-

tum Theory Project, University of Florida, Gainesville, FL!.
28A. H. de Vries and P. Th. van Duijnen, Int. J. Quantum Chem.57, 1067

~1996!.
29F. Grozema and P. Th. van Duijnen, J. Phys. Chem. A102, 7984

~1998!.
30P. T. van Duijnen, F. Grozema, and M. Swart, J. Mol. Struc

THEOCHEM 464, 191 ~1999!.
31M. Swart and P. Th. van Duijnen, J. Comput. Chem.~submitted!.
32F. Grozema, R. W. J. Zijlstra, and P. Th. van Duijnen, Chem. Phys.246,

217 ~1999!.
33J. Applequist, J. R. Carl, and J. K. Fung, J. Am. Chem. Soc.94, 2952

~1972!.
34J. Applequist, Acc. Chem. Res.10, 79 ~1977!.
35B. T. Thole, Chem. Phys.59, 341 ~1981!.
36J. A. C. Rullmann and P. Th. van Duijnen, Mol. Phys.63, 451 ~1988!.
37L. Jensen, P. Th. van Duijnen, and J. G. Snijders, J. Chem. Phys~in

press!.
38J. D. Augspurger and C. E. Dykstra, Int. J. Quantum Chem.43, 135

~1992!.
39B. Kirtman, C. E. Dykstra, and B. Champagne, Chem. Phys. Lett.305,

132 ~1999!.
40P. Th. van Duijnen and M. Swart, J. Phys. Chem. A102, 2399~1997!.
41A. H. Juffer, E. F. F. Botta, B. A. M. van Keulen, A. van der Ploeg, and

J. C. Berendsen, J. Comput. Phys.97, 144 ~1991!.
42P. Th. van Duijnen, A. H. Juffer, and J. P. Dijkman, J. Mol. Struc

THEOCHEM 260, 195 ~1992!.
43P. Th. van Duijnen and A. H. de Vries, Int. J. Quantum Chem.60, 1111

~1996!.
44F. Sim, S. Chin, M. Dupuis, and J. E. Rice, J. Phys. Chem.97, 158

~1993!.
45S. F. Boys and F. Bernardi, Mol. Phys.19, 553 ~1970!.
46A. J. Sadlej, Theor. Chim. Acta81, 339 ~1992!.
47T. H. Dunning and P. J. Hay, inMethods in Electronic Structure Theory,

edited by H. F. Schaefer III~Plenum, New York, 1977!, Vol. 1.
48P. Th. van Duijnen, M. Dupuis, and B. T. Thole, 1986, IBM DSD, KGN

38.
49J. L. Pascual-Ahuir, E. Silla, J. Tomasi, and R. Boncorsi, J. Comp

Chem.8, 778 ~1987!.
50J. L. Pascual-Ahuir and E. Silla, J. Comput. Chem.11, 1047~1990!.
51J. L. Pascual-Ahuir, E. Silla, and I. Tunon, J. Comput. Chem.15, 1127

~1994!.
52E. Silla, I. Tunon, and J. L. Pascual-Ahuir, J. Comput. Chem.12, 1077

~1991!.
53B. T. Thole and P. Th. van Duijnen, Theor. Chim. Acta63, 209 ~1983!.
54V. Frecer~personal communication, Trieste, 2000!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



8453J. Chem. Phys., Vol. 117, No. 18, 8 November 2002 Polarizabilities in the condensed phase
55T. R. Cundari, H. A. Kurtz, and T. Zhou, J. Phys. Chem. A104, 4711
~2000!.

56P. Macac, P. Norman, Y. Luo, and H. A˚ gren, J. Chem. Phys.112, 1868
~2000!.
Downloaded 24 Oct 2002 to 129.125.7.197. Redistribution subject to A
57T. D. Poulsen, P. R. Ogilby, and K. V. Mikkelsen, J. Chem. Phys.115,
7843 ~2001!.

58T. D. Poulsen, P. R. Ogilby, and K. V. Mikkelsen, J. Chem. Phys.116,
3730 ~2002!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


