1,652 research outputs found
Sleep monitoring using ear-centered setups: Investigating the influence from electrode configurations.
Modern sleep monitoring development is shifting towards the use of unobtrusive sensors combined with algorithms for automatic sleep scoring. Many different combinations of wet and dry electrodes, ear-centered, forehead-mounted or headband-inspired designs have been proposed, alongside an ever growing variety of machine learning algorithms for automatic sleep scoring. OBJECTIVE: Among candidate positions, those in the facial area and around the ears have the benefit of being relatively hairless, and in our view deserve extra attention. In this paper, we seek to determine the limits to sleep monitoring quality within this spatial constraint. METHODS: We compare 13 different, realistic sensor setups derived from the same data set and analysed with the same pipeline. RESULTS: All setups which include both a lateral and an EOG derivation show similar, state-of-the-art performance, with average Cohen's kappa values of at least 0.80. CONCLUSION: If large electrode distances are used, positioning is not critical for achieving large sleep-related signal-to-noise-ratio, and hence accurate sleep scoring. SIGNIFICANCE: We argue that with the current competitive performance of automated staging approaches, there is a need for establishing an improved benchmark beyond current single human rater scoring
Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation
PURPOSE: Accurate lesion segmentation is important for measurements of lesion load and atrophy in subjects with multiple sclerosis (MS). International MS lesion challenges show a preference of convolutional neural networks (CNN) strategies, such as nicMSlesions. However, since the software is trained on fairly homogenous training data, we aimed to test the performance of nicMSlesions in an independent dataset with manual and other automatic lesion segmentations to determine whether this method is suitable for larger, multi-center studies. METHODS: Manual lesion segmentation was performed in fourteen subjects with MS on sagittal 3D FLAIR images from a 3T GE whole-body scanner with 8-channel head coil. We compared five different categories of automated lesion segmentation methods for their volumetric and spatial agreement with manual segmentation: (i) unsupervised, untrained (LesionTOADS); (ii) supervised, untrained (LST-LPA and nicMSlesions with default settings); (iii) supervised, untrained with threshold adjustment (LST-LPA optimized for current data); (iv) supervised, trained with leave-one-out cross-validation on fourteen subjects with MS (nicMSlesions and BIANCA); and (v) supervised, trained on a single subject with MS (nicMSlesions). Volumetric accuracy was determined by the intra-class correlation coefficient (ICC) and spatial accuracy by Dice's similarity index (SI). Volumes and SI were compared between methods using repeated measures ANOVA or Friedman tests with post-hoc pairwise comparison. RESULTS: The best volumetric and spatial agreement with manual was obtained with the supervised and trained methods nicMSlesions and BIANCA (ICC absolute agreement > 0.968 and median SI > 0.643) and the worst with the unsupervised, untrained method LesionTOADS (ICC absolute agreement = 0.140 and median SI = 0.444). Agreement with manual in the single-subject network training of nicMSlesions was poor for input with low lesion volumes (i.e. two subjects with lesion volumes ≤ 3.0 ml). For the other twelve subjects, ICC varied from 0.593 to 0.973 and median SI varied from 0.535 to 0.606. In all cases, the single-subject trained nicMSlesions segmentations outperformed LesionTOADS, and in almost all cases it also outperformed LST-LPA. CONCLUSION: Input from only one subject to re-train the deep learning CNN nicMSlesions is sufficient for adequate lesion segmentation, with on average higher volumetric and spatial agreement with manual than obtained with the untrained methods LesionTOADS and LST-LPA
Subtypes of borderline personality disorder patients: a cluster-analytic approach.
BACKGROUND: The borderline personality disorder (BPD) population is notably heterogeneous, and this has potentially important implications for intervention. Identifying distinct subtypes of patients may represent a first step in identifying which treatments work best for which individuals. METHODS: A cluster-analysis on dimensional personality disorder (PD) features, as assessed with the SCID-II, was performed on a sample of carefully screened BPD patients (N = 187) referred for mentalization-based treatment. The optimal cluster solution was determined using multiple indices of fit. The validity of the clusters was explored by investigating their relationship with borderline pathology, symptom severity, interpersonal problems, quality of life, personality functioning, attachment, and trauma history, in addition to demographic and clinical features. RESULTS: A three-cluster solution was retained, which identified three clusters of BPD patients with distinct profiles. The largest cluster (n = 145) consisted of patients characterized by "core BPD" features, without marked elevations on other PD dimensions. A second "Extravert/externalizing" cluster of patients (n = 27) was characterized by high levels of histrionic, narcissistic, and antisocial features. A third, smaller "Schizotypal/paranoid" cluster (n = 15) consisted of patients with marked schizotypal and paranoid features. Patients in these clusters showed theoretically meaningful differences in terms of demographic and clinical features. CONCLUSIONS: Three meaningful subtypes of BPD patients were identified with distinct profiles. Differences were small, even when controlling for severity of PD pathology, suggesting a strong common factor underlying BPD. These results may represent a stepping stone toward research with larger samples aimed at replicating the findings and investigating differential trajectories of change, treatment outcomes, and treatment approaches for these subtypes. TRIAL REGISTRATION: The study was retrospectively registered 16 April 2010 in the Nederlands Trial Register, no. NTR2292
A bi-directional relationship between obesity and health-related quality of life : evidence from the longitudinal AusDiab study
Objective: To assess the prospective relationship between obesity and health-related quality of life, including a novel assessment of the impact of health-related quality of life on weight gain.Design and setting: Longitudinal, national, population-based Australian Diabetes, Obesity and Lifestyle (AusDiab) study, with surveys conducted in 1999/2000 and 2004/2005.Participants: A total of 5985 men and women aged 25 years at study entry.Main outcome measure(s): At both time points, height, weight and waist circumference were measured and self-report data on health-related quality of life from the SF-36 questionnaire were obtained. Cross-sectional and bi-directional, prospective associations between obesity categories and health-related quality of life were assessed.Results: Higher body mass index (BMI) at baseline was associated with deterioration in health-related quality of life over 5 years for seven of the eight health-related quality of life domains in women (all P0.01, with the exception of mental health, P>0.05), and six out of eight in men (all P<0.05, with the exception of role-emotional, P=0.055, and mental health, P>0.05). Each of the quality-of-life domains related to mental health as well as the mental component summary were inversely associated with BMI change (all P<0.0001 for women and P0.01 for men), with the exception of vitality, which was significant in women only (P=0.008). For the physical domains, change in BMI was inversely associated with baseline general health in women only (P=0.023).Conclusions: Obesity was associated with a deterioration in health-related quality of life (including both physical and mental health domains) in this cohort of Australian adults followed over 5 years. Health-related quality of life was also a predictor of weight gain over 5 years, indicating a bi-directional association between obesity and health-related quality of life. The identification of those with poor health-related quality of life may be important in assessing the risk of future weight gain, and a focus on health-related quality of life may be beneficial in weight management strategies.<br /
A route to high surface area, porosity and inclusion of large molecules in crystals
One of the outstanding challenges in the field of porous materials is the design and synthesis of chemical structures with exceptionally high surface areas(1). Such materials are of critical importance to many applications involving catalysis, separation and gas storage. The claim for the highest surface area of a disordered structure is for carbon, at 2,030 m(2) g(-1) (ref. 2). Until recently, the largest surface area of an ordered structure was that of zeolite Y, recorded at 904 m(2) g(-1) (ref. 3). But with the introduction of metal-organic framework materials, this has been exceeded, with values up to 3,000 m(2) g(-1) (refs 4-7). Despite this, no method of determining the upper limit in surface area for a material has yet been found. Here we present a general strategy that has allowed us to realize a structure having by far the highest surface area reported to date. We report the design, synthesis and properties of crystalline Zn4O(1,3,5-benzenetribenzoate)(2), a new metal-organic framework with a surface area estimated at 4,500 m(2) g(-1). This framework, which we name MOF-177, combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules-attributes not previously combined in one material.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62609/1/nature02311.pd
Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations
​Leucine-rich repeat kinase 2 (​LRRK2) mutations are the most common genetic cause of Parkinson’s disease. ​LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson’s disease, but whether ​LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that ​LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase ​αTAT1 prevents association of mutant ​LRRK2 with microtubules, and the deacetylase inhibitor ​trichostatin A (​TSA) restores axonal transport. In vivo knockdown of the deacetylases ​HDAC6 and ​Sirt2, or administration of ​TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson’s disease
Behavior Problems in Relation to Sustained Selective Attention Skills of Moderately Preterm Children
Attention skills may form an important developmental mechanism. A mediation model was examined in which behavioral problems of moderately preterm and term children at school age are explained by attention performance. Parents and teachers completed behavioral assessments of 348 moderately preterm children and 182 term children at 8 years of age. Children were administered a test of sustained selective attention. Preterm birth was associated with more behavioral and attention difficulties. Gestational age, prenatal maternal smoking, and gender were associated with mothers’, fathers’, and teachers’ reports of children’s problem behavior. Sustained selective attention partially mediated the relationship between birth status and problem behavior. Development of attention skills should be an important focus for future research in moderately preterm children
Cooperation and virulence in acute Pseudomonas aeruginosa infections
BACKGROUND: Efficient host exploitation by parasites is frequently likely to depend on cooperative behaviour. Under these conditions, mixed-strain infections are predicted to show lower virulence (host mortality) than are single-clone infections, due to competition favouring non-contributing social 'cheats' whose presence will reduce within-host growth. We tested this hypothesis using the cooperative production of iron-scavenging siderophores by the pathogenic bacterium Pseudomonas aeruginosa in an insect host. RESULTS: We found that infection by siderophore-producing bacteria (cooperators) results in more rapid host death than does infection by non-producers (cheats), and that mixtures of both result in intermediate levels of virulence. Within-host bacterial growth rates exhibited the same pattern. Crucially, cheats were more successful in mixed infections compared with single-clone infections, while the opposite was true of cooperators. CONCLUSION: These data demonstrate that mixed clone infections can favour the evolution of social cheats, and thus decrease virulence when parasite growth is dependent on cooperative behaviours
Tolerance to the Neuron-Specific Paraneoplastic HuD Antigen
Experiments dating back to the 1940's have led to the hypothesis that the brain is an immunologically privileged site, shielding its antigens from immune recognition. The paraneoplastic Hu syndrome provides a powerful paradigm for addressing this hypothesis; it is believed to develop because small cell lung cancers (SCLC) express the neuron-specific Hu protein. This leads to an Hu-specific tumor immune response that can develop into an autoimmune attack against neurons, presumably when immune privilege in the brain is breached. Interestingly, all SCLC express the onconeural HuD antigen, and clinically useful tumor immune responses can be detected in up to 20% of patients, yet the paraneoplastic neurologic syndrome is extremely rare. We found that HuD-specific CD8+ T cells are normally present in the mouse T cell repertoire, but are not expanded upon immunization, although they can be detected after in vitro expansion. In contrast, HuD-specific T cells could be directly activated in HuD null mice, without the need for in vitro expansion. Taken together, these results demonstrate robust tolerance to the neuronal HuD antigen in vivo, and suggest a re-evaluation of the current concept of immune privilege in the brain
- …