3 research outputs found

    Genomics, Transcriptomics, And Beyond: The Fifteen Years Of Cacao’s Witches’ Broom Disease Genome Project

    No full text
    Cacao production in Brazil was severely affected by the outbreak of witches’ broom disease (WBD) in the late 1980s. WBD is caused by the basidiomycete fungus Moniliophthora perniciosa, a hemibiotrophic pathogen that displays an uncommonly long-lasting biotrophic stage during which the host cacao suffers intense morphologic alterations in the infected shoots, giving rise to “green brooms.” Two months after infection, the fungus becomes necrotrophic resulting in the necrosis and destruction of the infected tissues that turn into a “dry broom.” During the last 15 years, the knowledge of this devastating and intriguing disease has been growing due to initiatives such as the WBD genome project. By using genomics and transcriptomics as tools to obtain insights about this disease, the WBD project has been elucidating the biochemistry and physiology of both plant host and pathogen, paving the way for practical applications to combat the fungus. In this chapter we present an overview of progress in the understanding of M. perniciosa genetics and the molecular mechanisms governing WBD, provide a model for the M. perniciosa–cacao interaction, and point to new directions to fight this disease. © Springer International Publishing Switzerland 2016.17921

    High-resolution Transcript Profiling Of The Atypical Biotrophic Interaction Between Theobroma Cacao And The Fungal Pathogen Moniliophthora Perniciosa

    No full text
    Witches’ broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen’s transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly,M. perniciosa biotrophic mycelia develop as long-termparasites that orchestrate changes in plantmetabolismto increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.261142454269Adhikari, T., Balaji, B., Breeden, J., Goodwin, S., Resistance of wheat to Mycosphaerella graminicola involves early and late peaks of gene expression. Physiol. Mol (2007) Plant Pathol, 71, pp. 55-68Aime, M.C., Phillips-Mora, W., The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97, pp. 1012-1022Albersheim, P., Muhlethaler, K., Frey-Wyssling, A., Stained pectin as seen in the electron microscope (1960) J. Biophys. Biochem. Cytol, 8, pp. 501-506Alvim, F.C., Mattos, E.M., Pirovani, C.P., Gramacho, K., Pungartnik, C., Brendel, M., Cascardo, J.C., Vincentz, M., Carbon sourceinduced changes in the physiology of the cacao pathogen Moniliophthora perniciosa (Basidiomycetes) affect mycelial morphology and secretion of necrosis-inducing proteins (2009) Genet. Mol. Res, 8, pp. 1035-1050Apel, K., Hirt, H., Reactive oxygen species: Metabolism, oxidative stress, and signal transduction (2004) Annu. Rev. Plant Biol, 55, pp. 373-399ArgĂŽLo Santos Carvalho, H., De Andrade Silva, E.M., Carvalho Santos, S., Micheli, F., Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sources and possible post-translational modifications (2013) Fungal Genet. Biol, 60, pp. 110-121Argout, X., The genome of Theobroma cacao (2011) Nat. Genet, 43, pp. 101-108Azevedo, H., Lino-Neto, T., Tavares, R.M., An improved method for high-quality RNA isolation from needles of adult maritime pine trees (2003) Plant Mol. Biol. Rep, 21, pp. 333-338Berger, S., Sinha, A.K., Roitsch, T., Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions (2007) J. Exp. Bot, 58, pp. 4019-4026Bonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S., Infection with virulent and avirulent P. Syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves (2006) Planta, 225, pp. 1-12Braun, B.R., Head, W.S., Wang, M.X., Johnson, A.D., Identification and characterization of TUP1-regulated genes in Candida albicans (2000) Genetics, 156, pp. 31-44Buchanan-Wollaston, V., The molecular biology of leaf senescence (1997) J. Exp. Bot, 48, pp. 181-199Caldo, R.A., Nettleton, D., Peng, J., Wise, R.P., Stagespecific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles (2006) Mol. Plant Microbe Interact, 19, pp. 939-947Cantacessi, C., Campbell, B.E., Visser, A., Geldhof, P., Nolan, M.J., Nisbet, A.J., Matthews, J.B., Gasser, R.B., A portrait of the “SCP/TAPS” proteins of eukaryotes—developing a framework for fundamental research and biotechnological outcomes (2009) Biotechnol. Adv, 27, pp. 376-388Ceita, G.D., Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora pemiciosa (2007) Plant Sci, 173, pp. 106-117Chandran, D., Inada, N., Hather, G., Kleindt, C.K., Andwildermuth, M.C., Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators (2010) Proc. Natl. Acad. Sci, 107, pp. 460-465. , USAChou, H.M., Bundock, N., Rolfe, S.A., Scholes, J.D., Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism (2000) Mol. Plant Pathol, 1, pp. 99-113Choudhary, V., Schneiter, R., Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins (2012) Proc. Natl. Acad. Sci, 109, pp. 16882-16887. , USAColeman, J.J., Mylonakis, E., Efflux in fungi: La piĂšce de rĂ©sistance (2009) PLoS Pathog, 5Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Zhang, F., Multiplex genome engineering using CRISPR/Cas systems (2013) Science, 339, pp. 819-823Da Hora Junior, B.T., Poloni, J.F., Lopes, M.A., Dias, C.V., Gramacho, K.P., Schuster, I., Sabau, X., Andmicheli, F., Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches’ broom disease. Mol (2012) Biosyst, 8, pp. 1507-1519De O Barsottini, M.R., Functional diversification of cerato- platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. Mol (2013) Plant Microbe Interact, 26, pp. 1281-1293De Oliveira, B.V., Teixeira, G.S., Reis, O., Barau, J.G., Teixeira, P.J., Do Rio, M.C., Domingues, R.R., Pereira, G.A., A potential role for an extracellular methanol oxidase secreted by Moniliophthora perniciosa in Witches’ broom disease in cacao. Fungal Genet (2012) Biol, 49, pp. 922-932De Wit, P.J., The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry (2012) PLoS Genet, 8Deeken, R., Engelmann, J.C., Efetova, M., Czirjak, T., MĂŒller, T., Kaiser, W.M., Tietz, O., Hedrich, R., An integrated view of gene expression and solute profiles of Arabidopsis tumors: A genomewide approach (2006) Plant Cell, 18, pp. 3617-3634Dezwaan, T.M., Carroll, A.M., Valent, B., Sweigard, J.A., Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues (1999) Plant Cell, 11, pp. 2013-2030Dias, C.V., Mendes, J.S., Dos Santos, A.C., Pirovani, C.P., Da Silva Gesteira, A., Micheli, F., Gramacho, K.P., De Mattos Cascardo, J.C., Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol (2011) Biochem, 49, pp. 917-922Dodds, P.N., Rathjen, J.P., Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat (2010) Rev. Genet, 11, pp. 539-548Doehlemann, G., Wahl, R., Horst, R.J., Voll, L.M., Usadel, B., Poree, F., Stitt, M., KĂ€mper, J., Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis (2008) Plant J, 56, pp. 181-195El Gueddari, N.E., Rauchhaus, U., Moerschbacher, B.M., Deising, H.B., Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi (2002) New Phytol, 156, pp. 103-112Evans, H.C., Pleomorphism in Crinipellis perniciosa, causal agent of Witches’ broom disease of cocoa (1980) Trans. Br. Mycol. Soc, 74, pp. 515-526Fernandez, D., Tisserant, E., Talhinhas, P., Azinheira, H., Vieira, A., Petitot, A.S., Loureiro, A., Duplessis, S., 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Mol (2012) Plant Pathol, 13, pp. 17-37Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., Gurr, S.J., Emerging fungal threats to animal, plant and ecosystem health (2012) Nature, 484, pp. 186-194Fotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., Hall, J.L., Williams, L.E., The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum (2003) Plant Physiol, 132, pp. 821-829Frias, G., Purdy, L.H., Schmidt, R.A., An inoculation method for evaluating resistence of cacao to Crinipellis perniciosa (1995) Plant Dis, 79, pp. 787-791Fujiki, Y., Yoshikawa, Y., Sato, T., Inada, N., Ito, M., Nishida, I., Watanabe, A., Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol (2001) Plant, 111, pp. 345-352Gan, S., Amasino, R.M., Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence) (1997) Plant Physiol, 113, pp. 313-319Garnica, D.P., Upadhyaya, N.M., Dodds, P.N., Rathjen, J.P., Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing (2013) PLoS ONE, 8Gerrits, P.O., Smid, L., A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections (1983) J. Microsc, 132, pp. 81-85Gesteira, A.S., Micheli, F., Carels, N., Da Silva, A.C., Gramacho, K.P., Schuster, I., MacĂȘdo, J.N., Cascardo, J.C., Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa (2007) Ann. Bot. (Lond.), 100, pp. 129-140Gibbs, G.M., Roelants, K., O’bryan, M.K., The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis- related 1 proteins—roles in reproduction, cancer, and immune defense. Endocr (2008) Rev, 29, pp. 865-897Glazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu (2005) Rev. Phytopathol, 43, pp. 205-227Godfrey, D., Böhlenius, H., Pedersen, C., Zhang, Z., Emmersen, J., Thordal-Christensen, H., Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif (2010) BMC Genomics, 11, p. 317Goldman, N., Yang, Z., A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol (1994) Evol, 11, pp. 725-736Graham, I.A., Seed storage oil mobilization. Annu (2008) Rev. Plant Biol, 59, pp. 115-142Griffith, G.W., Nicholson, J., Nenninger, A., Birch, R.N., Hedger, J.N., Witches’ brooms and frosty pods: Two major pathogens of cacao. N.Z (2003) J. Bot, 41, pp. 423-435Guyon, K., BalaguĂ©, C., Roby, D., Raffaele, S., Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum (2014) BMC Genomics, 15, p. 336Horst, R.J., Engelsdorf, T., Sonnewald, U., Voll, L.M., Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis (2008) J. Plant Physiol, 165, pp. 19-28Joly, D.L., Feau, N., Tanguay, P., Hamelin, R.C., Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.) (2010) BMC Genomics, 11, p. 422Jones, J.D., Dangl, J.L., The plant immune system (2006) Nature, 444, pp. 323-329Kale, S.D., External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells (2010) Cell, 142, pp. 284-295Karnovsky, M.J., A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy (1965) J. Cell Biol, 27, pp. 137-139Kawahara, Y., Oono, Y., Kanamori, H., Matsumoto, T., Itoh, T., Minami, E., Simultaneous RNA-seq analysis of a mixedtranscriptome of rice and blast fungus interaction (2012) PLoS ONE, 7Kemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A.C., Balmuth, A.L., Robert-Seilaniantz, A., Bailey, K., Jones, J.D., Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana (2011) PLoS Biol, 9Kilaru, A., Bailey, B.A., Hasenstein, K.H., Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol (2007) Lett, 274, pp. 238-244Kulkarni, R.D., Kelkar, H.S., Dean, R.A., An eight-cysteine- containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem (2003) Sci, 28, pp. 118-121Kunjeti, S.G., Evans, T.A., Marsh, A.G., Gregory, N.F., Kunjeti, S., Meyers, B.C., Kalavacharla, V.S., Donofrio, N.M., RNA-Seq reveals infection-related global gene changes in Phytophthora phaseoli, the causal agent of lima bean downy mildew. Mol (2012) Plant Pathol, 13, pp. 454-466Lam, H.M., Peng, S.S., Coruzzi, G.M., Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana (1994) Plant Physiol, 106, pp. 1347-1357Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (2009) Genome Biol, 10, p. R25Leal, G.A., Jr., Albuquerque, P.S., Figueira, A., Genes differentially expressed in Theobroma cacao associated with resistance to witches’ broom disease caused by Crinipellis perniciosa. Mol (2007) Plant Pathol, 8, pp. 279-292Leal, G.A., Gomes, L.H., Albuquerque, P.S., Tavares, F.C., Figueira, A., Searching for Moniliophthora perniciosa pathogenicity genes (2010) Fungal Biol, 114, pp. 842-854Li, L., Stoeckert, C.J., Jr., Roos, D.S., OrthoMCL: Identification of ortholog groups for eukaryotic genomes (2003) Genome Res, 13, pp. 2178-2189Link, T.I., Lang, P., Scheffler, B.E., Duke, M.V., Graham, M.A., Cooper, B., Tucker, M.L., Whitham, S.A., The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. Mol (2014) Plant Pathol, 15, pp. 379-393Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408LoquĂ©, D., Ludewig, U., Yuan, L., Von WirĂ©N, N., Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole (2005) Plant Physiol, 137, pp. 671-680Lowe, R.G., Cassin, A., Grandaubert, J., Clark, B.L., Van Dewouw, A.P., Rouxel, T., Howlett, B.J., Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species (2014) PLoS ONE, 9Maere, S., Heymans, K., Kuiper, M., BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks (2005) Bioinformatics, 21, pp. 3448-3449Marcel, S., Sawers, R., Oakeley, E., Angliker, H., Paszkowski, U., Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae (2010) Plant Cell, 22, pp. 3177-3187Meinhardt, L.W., Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: Mechanisms of the biotrophic and necrotrophic phases (2014) BMC Genomics, 15, p. 164Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D., Pereira, G.A., Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: What’s new from this old foe? Mol (2008) Plant Pathol, 9, pp. 577-588Melnick, R.L., Marelli, J.P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches’ broom disease, during parthenocarpy. Tree Genet (2012) Genomes, 8, pp. 1261-1279Moktali, V., Park, J., Fedorova-Abrams, N.D., Park, B., Choi, J., Lee, Y.H., Kang, S., Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes (2012) BMC Genomics, 13, p. 525Monaghan, J., Zipfel, C., Plant pattern recognition receptor complexes at the plasma membrane (2012) Curr. Opin. Plant Biol, 15, pp. 349-357Mondego, J.M., A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao (2008) BMC Genomics, 9, p. 548Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat (2008) Methods, 5, pp. 621-628Motamayor, J.C., The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color (2013) Genome Biol, r53, p. 14MĂŒnch, S., Lingner, U., Floss, D.S., Ludwig, N., Sauer, N., Deising, H.B., The hemibiotrophic lifestyle of Colletotrichum species (2008) J. Plant Physiol, 165, pp. 41-51Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling (2006) Science, 312, pp. 436-439O’ Brien, T.P., Feder, N., McCully, M.E., Polychromatic staining of plant cell walls by Toluidine blue O (1964) Protoplasma, 59, p. 368Orchard, J., Collin, H.A., Hardwick, K., Isaac, S., Changes in morphology and measurement of cytokinin levels during the development of witches’ brooms on cocoa (1994) Plant Pathol, 43, pp. 65-72Panstruga, R., Establishing compatibility between plants and obligate biotrophic pathogens (2003) Curr. Opin. Plant Biol, 6, pp. 320-326Pazzagli, L., Seidl-Seiboth, V., Barsottini, M., Vargas, W., Scala, A., Mukherjee, P., Cerato-platanins: Elicitors and effectors (2014) Plant Sci, , http://dx.doi.org/10.1016/j.plantsci.2014.02.009Pedersen, C., Structure and evolution of barley powdery mildew effector candidates (2012) BMC Genomics, 13, p. 694Penman, D., Britton, G., Hardwick, K., Collin, H.A., Isaac, S., Chitin as a measure of biomass of Crinipellis perniciosa, causal agent of witches’ broom disease of Theobroma cacao. Mycol (2000) Res, 104, pp. 671-675Perfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol (2001) Plant Pathol, 2, pp. 101-108Petre, B., Morin, E., Tisserant, E., Hacquard, S., Da Silva, C., Poulain, J., Delaruelle, C., Duplessis, S., RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter (2012) PLoS ONE, 7Pires, A.B., Gramacho, K.P., Silva, D.C., GĂłes-Neto, A., Silva, M.M., Muniz-Sobrinho, J.S., Porto, R.F., Pereira, G.A., Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes (2009) BMC Microbiol, 9, p. 158Prados-Rosales, R.C., RoldĂĄn-RodrĂ­guez, R., Serena, C., LĂłPez-Berges, M.S., Guarro, J., MartĂ­nez-Del-Pozo, Á., Di Pietro, A., A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts (2012) J. Biol. Chem, 287, pp. 21970-21979Pungartnik, C., Melo, S.C., Basso, T.S., Macena, W.G., Cascardo, J.C., Brendel, M., Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa. Fungal Genet (2009) Biol, 46, pp. 461-472Purdy, L.H., Schmidt, R.A., Status of cacao witches’ broom: Biology, epidemiology, and management. Annu (1996) Rev. Phytopathol, 34, pp. 573-594Ranwez, V., Harispe, S., Delsuc, F., Douzery, E.J., MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons (2011) PLoS ONE, 6Rashotte, A.M., Carson, S.D., To, J.P., Kieber, J.J., Expression profiling of cytokinin action in Arabidopsis (2003) Plant Physiol, 132, pp. 1998-2011Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.P., GenePattern 2.0. Nat (2006) Genet, 38, pp. 500-501Rincones, J., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa. Mol (2008) Plant Microbe Interact, 21, pp. 891-908Robinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: A Bioconductor package for differential expression analysis of digital gene expression data (2010) Bioinformatics, 26, pp. 139-140Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W., Schiavinato, M.A., Cascardo, J.C., Pereira, G.A., Biochemical changes during the development of witches’ broom: The most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J. Exp. Bot, 56, pp. 865-877Skibbe, D.S., Doehlemann, G., Fernandes, J., Walbot, V., Maize tumors caused by Ustilago maydis require organspecific genes in host and pathogen (2010) Science, 328, pp. 89-92Stergiopoulos, I., De Wit, P.J., Fungal effector proteins. Annu (2009) Rev. Phytopathol, 47, pp. 233-263Studholme, D.J., Glover, R.H., Boonham, N., Application of high-throughput DNA sequencing in phytopathology. Annu (2011) Rev. Phytopathol, 49, pp. 87-105Teixeira, P.J., Thomazella, D.P., Vidal, R.O., Do Prado, P.F., Reis, O., Baroni, R.M., Franco, S.F., Mondego, J.M., The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao (2012) PLoS ONE, 7Thimm, O., BlĂ€sing, O., Gibon, Y., Nagel, A., Meyer, S., KrĂŒger, P., Selbig, J., Stitt, M., MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant J, 37, pp. 914-939Thomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012

    Understanding the Plant-microbe Interactions in CRISPR/Cas9 Era: Indeed a Sprinting Start in Marathon

    No full text
    corecore