146 research outputs found

    Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses

    Get PDF
    Humans are infected with paramyxoviruses of different genera early in life, which induce cytotoxic T cells that may recognize conserved epitopes. This raises the question of whether cross-reactive T cells induced by antecedent paramyxovirus infections provide partial protection against highly lethal zoonotic Nipah virus infections. By characterizing a measles virus-specific but paramyxovirus cross-reactive human T cell clone, we discovered a highly conserved HLA-B*1501- restricted T cell epitope in the fusion protein. Using peptides, tetramers, and single cell sorting, we isolated a parainfluenza virus-specific T cell clone from a healthy adult and showed that both clones cleared Nipah virus-infected cells. We identified multiple conserved hot spots in paramyxovirus proteomes that contain other potentially cross-reactive epitopes. Our data suggest that, depending on HLA haplotype and history of paramyxovirus exposures, humans may have cross-reactive T cells that provide protection against Nipah virus. The effect of preferential boosting of these cross-reactive epitopes needs to be further studied in light of paramyxovirus vaccination studies

    Identification of a common HLA-DP4-restricted T-cell epitope in the conserved region of the respiratory syncytial virus G protein

    Get PDF
    The cellular immune response to respiratory syncytial virus (RSV) is important in both protection and immunopathogenesis. In contrast to HLA class I, HLA class II-restricted RSV-specific T-cell epitopes have not been identified. Here, we describe the generation and characterization of two human RSV-specific CD4(+)-T-cell clones (TCCs) associated with type 0-like cytokine profiles. TCC 1 was specific for the matrix protein and restricted over HLA-DPB1*1601, while TCC 2 was specific for the attachment protein G and restricted over either HLA-DPB1*0401 or -0402. Interestingly, the latter epitope is conserved in both RSV type A and B viruses. Given the high allele frequencies of HLA-DPB1*0401 and -0402 worldwide, this epitope could be widely recognized and boosted by recurrent RSV infections. Indeed, peptide stimulation of peripheral blood mononuclear cells from healthy adults resulted in the detection of specific responses in 8 of 13 donors. Additional G-specific TCCs were generated from three of these cultures, which recognized the identical (n = 2) or almost identical (n = 1) HLA-DP4-restricted epitope as TCC 2. No significant differences were found between the capacities of cell lines obtained from infants with severe (n = 41) or mild (n = 46) RSV lower respiratory tract infections to function as antigen-presenting cells to the G-specific TCCs, suggesting that the severity of RSV disease is not linked to the allelic frequency of HLA-DP4. In conclusion, we have identified an RSV G-specific human T helper cell epitope restricted by the widely expressed HLA class II alleles DPB1*0401 and -0402. Its putative role in protection and/or immunopathogenesis remains to be determined

    DC-SIGN and CD150 Have Distinct Roles in Transmission of Measles Virus from Dendritic Cells to T-Lymphocytes

    Get PDF
    Measles virus (MV) is among the most infectious viruses that affect humans and is transmitted via the respiratory route. In macaques, MV primarily infects lymphocytes and dendritic cells (DCs). Little is known about the initial target cell for MV infection. Since DCs bridge the peripheral mucosal tissues with lymphoid tissues, we hypothesize that DCs are the initial target cells that capture MV in the respiratory tract and transport the virus to the lymphoid tissues where MV is transmitted to lymphocytes. Recently, we have demonstrated that the C-type lectin DC-SIGN interacts with MV and enhances infection of DCs in cis. Using immunofluorescence microscopy, we demonstrate that DC-SIGN+ DCs are abundantly present just below the epithelia of the respiratory tract. DC-SIGN+ DCs efficiently present MV-derived antigens to CD4+ T-lymphocytes after antigen uptake via either CD150 or DC-SIGN in vitro. However, DC-SIGN+ DCs also mediate transmission of MV to CD4+ and CD8+ T-lymphocytes. We distinguished two different transmission routes that were either dependent or independent on direct DC infection. DC-SIGN and CD150 are both involved in direct DC infection and subsequent transmission of de novo synthesized virus. However, DC-SIGN, but not CD150, mediates trans-infection of MV to T-lymphocytes independent of DC infection. Together these data suggest a prominent role for DCs during the initiation, dissemination, and clearance of MV infection

    A measles virus-based vaccine induces robust chikungunya virus-specific CD4<sup>+</sup> T-cell responses in a phase II clinical trial

    Get PDF
    Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.</p

    Antigenic and genetic variability of human metapneumoviruses

    Get PDF
    Human metapneumovirus (HMPV) is a member of the subfamily Pneumovirinae within the family Paramyxo- viridae. Other members of this subfamily, respiratory syncytial virus and avian pneumovirus, can be divided into subgroups on the basis of genetic or antigenic differences or both. For HMPV, the existence of different genetic lineages has been described on the basis of variation in a limited set of available sequences. We address the antigenic relationship between genetic lineages in virus neutralization assays. In addition, we analyzed the genetic diversity of HMPV by phylogenetic analysis of sequences obtained for part of the fusion protein (n = 84) and the complete attachment protein open reading frames (n = 35). On the basis of sequence diversity between attachment protein genes and the differences in virus neutralization titers, two HMPV serotypes were defined. Each serotype could be divided into two genetic lineages, but these did not reflect major antigenic differences

    Complete Genome Sequences of Six Measles Virus Strains.

    Get PDF
    Genetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing

    Characterization of morbilliviruses isolated from dolphins and porpoises in Europe.

    Get PDF
    A previously unidentified morbillivirus was isolated from two harbour porpoises (Phocoena phocoena) that had died in the Dutch Waddensea (North Sea) in 1990. This porpoise morbillivirus (PMV) and a dolphin morbillivirus (DMV), which had recently caused a heavy mortality in Mediterranean striped dolphins (Stenella coeruleoalba), were compared antigenically with other members of the genus Morbillivirus, including the newly recognized phocine distemper virus type 1. DMV and PMV proved to be similar but distinct morbilliviruses, closely related to rinderpest virus and peste-des-petits-ruminants virus. Cell cultures of cetacean, pinniped, ruminant and canine origin showed a different pattern of susceptibility to DMV and PMV infection. Ruminants and dogs proved to be susceptible to experimental infection with DMV and PMV, which both caused a transient leukopenia most pronounced in the ruminants. Pre-exposure of dogs to DMV and PMV protected them from developing CDV viraemia and clinical signs upon challenge infection with virulent CDV. A serological survey among stranded animals of different cetacean species in Europe indicated that infections with DMV- and PMV-like morbilliviruses are not uncommon among these aquatic mammals

    Predominant Infection of CD150+ Lymphocytes and Dendritic Cells during Measles Virus Infection of Macaques

    Get PDF
    Measles virus (MV) is hypothesized to enter the host by infecting epithelial cells of the respiratory tract, followed by viremia mediated by infected monocytes. However, neither of these cell types express signaling lymphocyte activation molecule (CD150), which has been identified as the receptor for wild-type MV. We have infected rhesus and cynomolgus macaques with a recombinant MV strain expressing enhanced green fluorescent protein (EGFP); thus bringing together the optimal animal model for measles and a virus that can be detected with unprecedented sensitivity. Blood samples and broncho-alveolar lavages were collected every 3 d, and necropsies were performed upon euthanasia 9 or 15 d after infection. EGFP production by MV-infected cells was visualized macroscopically, in both living and sacrificed animals, and microscopically by confocal microscopy and FACS analysis. At the peak of viremia, EGFP fluorescence was detected in skin, respiratory and digestive tract, but most intensely in all lymphoid tissues. B- and T-lymphocytes expressing CD150 were the major target cells for MV infection. Highest percentages (up to 30%) of infected lymphocytes were detected in lymphoid tissues, and the virus preferentially targeted cells with a memory phenotype. Unexpectedly, circulating monocytes did not sustain productive MV infection. In peripheral tissues, large numbers of MV-infected CD11c+ MHC class-II+ myeloid dendritic cells were detected in conjunction with infected T-lymphocytes, suggesting transmission of MV between these cell types. Fluorescent imaging of MV infection in non-human primates demonstrated a crucial role for lymphocytes and dendritic cells in the pathogenesis of measles and measles-associated immunosuppression
    • …
    corecore