2 research outputs found

    Regional differences of testicular artery blood flow in post pubertal and pre-pubertal dogs

    Get PDF
    Background Measurement of testicular artery blood flow is used in several species to evaluate reproductive function and testicular and scrotal pathology. In dogs there are inconsistent reports about normal flow in post-pubertal dogs and no information concerning pre-pubertal dogs. The aim of this study was to describe regional differences in testicular artery blood flow in clinically normal post-pubertal and pre-pubertal dogs with no history of reproductive tract disease. Results The post-pubertal dogs produced normal ejaculates throughout the study. In all dogs the three different regions of the artery were imaged and monophasic flow with an obvious systolic peak and flow throughout diastole was observed on every occasion. The highest peak systolic velocity (PSV) and end diastolic velocity (EDV) were measured within the distal supra-testicular artery and marginal artery whilst the lowest PSV and EDV were measured within the intra-testicular arteries. Flow measurements were not different between left and right testes and were consistent between dogs on different examination days. Calculated resistance index (RI) and pulsatility index (PI) were lowest in the intra-testicular arteries. The pre-pubertal dogs had significantly smaller testes than the post-pubertal dogs (p < 0.05) and were unable to ejaculate during the study. The three different artery regions were imaged at every examination time point, and flow profiles had a similar appearance to those of the post-pubertal dogs. PSV, EDV, RI and PI showed a similar trend to the post-pubertal dogs in that values were lowest in the intra-testicular arteries. Notably, values of PSV, EDV, RI and PI were significantly lower (p < 0.05) in pre-pubertal dogs compared with post-pubertal dogs. Conclusions This study demonstrated important regional and pubertal differences in testicular artery blood flow of dogs, and form the basis for establishing baseline reference values that may be employed for the purposes of clinical diagnosis

    Semen quality, testicular B-mode and Doppler ultrasound, and serum testosterone concentrations in dogs with established infertility

    Get PDF
    Retrospective examination of breeding records enabled the identification of 10 dogs of normal fertility and 10 dogs with established infertility of at least 12 months of duration. Comparisons of testicular palpation, semen evaluation, testicular ultrasound examination, Doppler ultrasound measurement of testicular artery blood flow, and measurement of serum testosterone concentration were made between the two groups over weekly examinations performed on three occasions. There were no differences in testicular volume (cm3) between the two groups (fertile right testis = 10.77 ± 1.66; fertile left testis = 12.17 ± 2.22); (infertile right testis = 10.25 ± 3.33; infertile left testis = 11.37 ± 3.30), although the infertile dogs all had subjectively softer testes compared with the fertile dogs. Infertile dogs were either azoospermic or when they ejaculated, they had lower sperm concentration, sperm motility, and percentage of morphologically normal spermatozoa than fertile dogs. Furthermore, infertile dogs had reduced sperm membrane integrity measured via the hypoosmotic swelling test. Infertile dogs had significantly lower basal serum testosterone concentrations (1.40 ± 0.62 ng/mL) than fertile dogs (1.81 ± 0.87 ng/mL; P < 0.05). There were subjective differences in testicular echogenicity in some of the infertile dogs, and important differences in testicular artery blood flow with lower peak systolic and end-diastolic velocities measured in the distal supratesticular artery, marginal testicular artery, and intratesticular artery of infertile dogs (P < 0.05). Notably, resistance index and pulsatility index did not differ between infertile and fertile dogs. These findings report important differences between infertile and fertile dogs which may be detected within an expanded breeding soundness examination
    corecore