15,338 research outputs found

    Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009

    Full text link
    The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of galactic protons were recorded at Earth in late 2009 in contrast to expectations. Proton spectra observed for 2006 to 2009 from the PAMELA cosmic ray detector on-board the Resurs-DK1 satellite are presented together with the solutions of a comprehensive numerical model for the solar modulation of cosmic rays. The model is used to determine what mechanisms were mainly responsible for the modulation of protons during this period, and why the observed spectrum for 2009 was the highest ever recorded. From mid-2006 until December 2009 we find that the spectra became significantly softer because increasingly more low energy protons had reached Earth. To simulate this effect, the rigidity dependence of the diffusion coefficients had to decrease significantly below ~3 GeV. The modulation minimum period of 2009 can thus be described as relatively more "diffusion dominated" than previous solar minima. However, we illustrate that drifts still had played a significant role but that the observable modulation effects were not as well correlated with the waviness of the heliospheric current sheet as before. Protons still experienced global gradient and curvature drifts as the heliospheric magnetic field had decreased significantly until the end of 2009, in contrast to the moderate decreases observed during previous minimum periods. We conclude that all modulation processes contributed to the observed increases in the proton spectra for this period, exhibiting an intriguing interplay of these major mechanisms

    Kaon physics with the KLOE detector

    Get PDF
    In this paper we discuss the recent finalized analyses by the KLOE experiment at DAΦ\PhiNE: the CPT and Lorentz invariance test with entangled K0Kˉ0K^0 \bar{K}^0 pairs, and the precision measurement of the branching fraction of the decay K+π+ππ+(γ){ K^+} \rightarrow \pi^+\pi^-\pi^+(\gamma). We also present the status of an ongoing analysis aiming to precisely measure the K±K^{\pm} mass

    Theory of continuum percolation II. Mean field theory

    Full text link
    I use a previously introduced mapping between the continuum percolation model and the Potts fluid to derive a mean field theory of continuum percolation systems. This is done by introducing a new variational principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are β=1\beta= 1, γ=1\gamma= 1 and ν=0.5\nu = 0.5, which are identical with the mean field exponents of lattice percolation. The critical density in this approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [- v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late

    Electrocardiographic and Echocardiographic Detection of Myocardial Infarction in Patients with Left-Ventricular Hypertrophy: the LIFE Study

    Get PDF
    corecore