21 research outputs found

    Nanomagnetite- and Nanotitania-Incorporated Polyacrylonitrile Nanofibers for Simultaneous Cd(II)- and As(V)-Ion Removal Applications

    Get PDF
    This work reports the fabrication of nanomagnetite- and nanotitania-incorporated polyacrylonitrile nanofibers (MTPANs) by an electrospinning process, which has the potential to be used as a membrane material for the selective removal of Cd(II) and As(V) in water. The fiber morphology was characterized by scanning electron microscopy (SEM). The incorporation of nanomagnetite and nanotitania in the composite fiber matrix was confirmed by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The fibers doped with nanomagnetite and nanotitania (MPAN and TPAN fibers, respectively), as well as MTPAN and neat polycrylonitrile (PAN) fibers, after thermally stabilizing at 275 °C in air, were assessed for their comparative As(V)- and Cd(II)-ion removal capacities. The isotherm studies indicated that the highest adsorption of Cd(II) was shown by MTPAN, following the Langmuir model with a qm of 51.5 mg/m^{2}. On the other hand, MPAN showed the highest As(V)adsorption capacity, following the Freundlich model with a K_{F} of 0.49. The mechanism of adsorption of both Cd(II) and As(V) by fibers was found to be electrostatically driven, which was confirmed by correlating the point of zero charges (PZC) exhibited by fibers with the pH of maximum ion adsorptions. The As(V) adsorption on MPAN occurs by an inner-sphere mechanism, whereas Cd(II) adsorption on MTPAN is via both surface complexation and an As(V)-assisted inner-sphere mechanism. Even though the presence of coexistent cations, Ca(II) and Mg(II), has been shown to affect the Cd(II) removal by MTPAN, the MTPAN structure shows >50% removal efficiency even for minute concentrations (0.5 ppm) of Cd(II) in the presence of high common ion concentrations (10 ppm). Therefore, the novel polyacrylonitrile-based nanofiber material has the potential to be used in polymeric filter materials used in water purification to remove As(V) and Cd(II) simultaneously

    Improved nanocomposite of montmorillonite and hydroxyapatite for defluoridation of water

    Get PDF
    A novel hydroxyapatite montmorillonite (HAP-MMT) nanocomposite system was synthesized using a simple wet chemical in situ precipitation method. Neat nano hydroxyapatite (HAP) was also synthesized for comparison. The characterization of the materials was carried out using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) isotherms to study the functional groups, morphology, crystallinity and the surface area respectively. Batch adsorption studies and kinetic studies on fluoride adsorption were conducted for the HAP-MMT system and for neat HAP. The effect of parameters such as contact time, pH, initial concentration, temperature, and thermodynamic parameters and the effect of coexisting ions on fluoride adsorption by HAP-MMT were studied. Results of the isotherm experiments were fitted to four adsorption isotherm models namely Langmuir, Freundlich, Temkin and Dubinin Radushkevich. Fluoride adsorption over HAP-MMT fitted to the Freundlich adsorption isotherm model and showed more than two-fold improved adsorption capacity (16.7 mg g−1) compared to neat HAP. The best-fitting kinetic model for both adsorbents was found to be pseudo second order. Calculated thermodynamic parameters indicated that the fluoride adsorption by HAP-MMT is more favorable compared to that on HAP within the temperature range of 27 °C–60 °C. Improved fluoride adsorption by HAP-MMT is attributed to the exfoliated nature of HAP-MMT. Gravity filtration studies carried out using a 1.5 ppm fluoride solution, which is closer to the ground water fluoride concentrations of Chronic Kidney Disease of unknown etiology (CKDu) affected areas in Sri Lanka, resulted in a 1600 ml g−1 break through volume indicating the potential of HAP-MMT to be used in real applications

    Structure–Activity Relationship of Lanthanide-Incorporated Nano-Hydroxyapatite for the Adsorption of Fluoride and Lead

    Get PDF
    The growing demand for water purification provided the initial momentum to produce lanthanide-incorporated nano-hydroxyapatite (HAP) such as HAP·CeO2, HAP·CeO2·La(OH)3 (2:1), and HAP·CeO2·La(OH)3 (3:2). These materials open avenues to remove fluoride and lead ions from contaminated water bodies effectively. Composites of HAP containing CeO2 and La(OH)3 were prepared using in situ wet precipitation of HAP, followed by the addition of Ce(SO4)2 and La(NO3)3 into the same reaction mixture. The resultant solids were tested for the removal of fluoride and lead ions from contaminated water. It was found that the composite HAP·CeO2 shows fluoride and lead ion removal capacities of 185 and 416 mg/g, respectively. The fluoride removal capacity of the composite was improved when La(OH)3 was incorporated and it was observed that the composite HAP·CeO2·La(OH)3 (3:2) has the highest recorded fluoride removal capacity of 625 mg/g. The materials were characterized using scanning electron microscopy–energy-dispersive X-ray (SEM-EDX) spectrometry, Fourier transform infrared (FT-IR) spectrometry, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) surface area analysis. Analysis of results showed that Ce and La are incorporated in the HAP matrix. Results of kinetic and leaching analyses indicated a chemisorptive behavior during fluoride and lead ion adsorption by the composites; meanwhile, the thermodynamic profile shows a high degree of feasibility for fluoride and lead adsorption

    Biopolymer-Based Nanohydroxyapatite Composites for the Removal of Fluoride, Lead, Cadmium, and Arsenic from Water

    Get PDF
    In this study, hydroxyapatite (HAP) nanocomposites were prepared with chitosan (HAP-CTS), carboxymethyl cellulose (HAP-CMC), alginate (HAP-ALG), and gelatin (HAP-GEL) using a simple wet chemical in situ precipitation method. The synthesized materials were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, and thermogravimetric analysis. This revealed the successful synthesis of composites with varied morphologies. The adsorption abilities of the materials toward Pb(II), Cd(II), F–, and As(V) were explored, and HAP-CTS was found to have versatile adsorption properties for all of the ions, across a wide range of concentrations and pH values, and in the presence of common ions found in groundwater. Additionally, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy confirmed the affinity of HAP-CTS toward multi-ion mixture containing all four ions. HAP-CTS was hence engineered into a more user-friendly form, which can be used to form filters through its combination with cotton and granular activated carbon. A gravity filtration study indicates that the powder form of HAP-CTS is the best sorbent, with the highest breakthrough capacity of 3000, 3000, 2600, and 2000 mL/g for Pb(II), Cd(II), As(V), and F–, respectively. Hence, we propose that HAP-CTS could be a versatile sorbent material for use in water purification

    Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties.

    Get PDF
    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.Peer Reviewe

    A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media

    No full text
    A novel curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is reported. A superabsorbent biopolymer; carboxymethyl cellulose (CMC) was used as an emulsifier for curcuminwhich is a turmeric derived water insoluble polyphenolic compound with antibacterial/anti-cancer properties. Montmorillonite (MMT) nanoclay was incorporated in the formulation as a matrix material which also plays a role in release kinetics. It was observed that water solubility of curcumin in the nanocomposite has significantly increased (60% release within 2 h and 30 min in distilled water at pH 5.4) compared to pure curcumin. The prepared curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is suitable as a curcumin carrier having enhanced release and structural properties

    Photocatalytic activity of electrospun MgO nanofibres: Synthesis, characterization and applications

    No full text
    One dimensional MgO nanofibres with high photocatalytic activity were fabricated using the electrospinning method via a polyvinyl alcohol (PVA)/magnesium precursor based system and the dye degradation efficacy of MgO nanofibres was compared with MgO nanospheres. Optimum electrospinning parameters including suitable magnesium precursors were investigated and the formation of MgO nanofibres were confirmed with scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) mapping. Furthermore, the crystalline lattice structure and surface roughness of fabricated nanofibres were evaluated using transmission electron microscopic-electron diffraction mode (TEM-SAED) and atomic force microscopy (AFM), respectively. Fabricated MgO nanofibres exhibited excellent photocatalytic degradation activity against widely used model reactive dye, Reactive Yellow (RY). In contrast to MgO nanospheres, electrospun MgO nanofibres completely degraded the reactive dye under UV irradiation. These photocatalytic MgO nanofibres show a great potential to be used in efficient treatment of industrial dye effluents

    Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties

    No full text
    Chitosan nanocomposite thin films were fabricated by incorporating MgO nanoparticles to significantly improve its physical properties for potential packaging applications. A novel in-situ method was developed to synthesise spherical shaped MgO nanoparticles by heat-treating magnesium carbonate/poly(methyl methacrylate) (PMMA) composite precursor. Optimum mechanical properties of chitosan composites were yielded at 5 (w/w%) of MgO concentration, where tensile stress and elastic modulus significantly improved by 86% and 38%, respectively, compared to those of pure chitosan films. These improvements are due to the interaction of hydroxyl and amine groups of chitosan with MgO as confirmed by FTIR spectroscopy. Fracture surface morphology indicated the interplay between MgO dispersion and aggregation on the mechanical properties at different MgO concentrations. Furthermore, the chitosan/MgO nanocomposites displayed remarkable thermal stability, flame retardant properties (satisfied V0 rating according to the UL-94 standards), UV shielding and moisture barrier properties, which could certainly add value to the packaging material

    Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite

    Get PDF
    Fluoride pollution of water is a matter of concern in many countries due to its association with chronic kidney failure. Therefore, it is important to develop fast and efficient methods for fluoride removal from drinking water using environmentally friendly materials. In this article, the synthesis, characterization and microwave assisted accelerated fluoride removal by porous nanohydroxyapatite (PHAP) are reported. The PHAP samples were synthesized using polyvinyl pyrrolidone and sodium dodecyl sulphate micellar system as the template. The prepared nanohydroxyapatite was characterized using TEM, SEM, FT-IR, TGA, XRD and BET. Investigation of the morphology of microcrystals using TEM showed the presence of spherical particles of 20–35 nm size and highly porous rod-shaped crystals with the aspect ratio of 2:13. The adsorption of F− ions using PHAP was carried out under the influence of microwave radiations using concentrations comparable to existing F− levels in natural water. The equilibrium is reached within 80 s and this is the fastest saturation time recorded for any existing material. The kinetic experiments showed that the fluoride adsorption is an activated second order process. The equilibrium fluoride adsorption capacity of PHAP was found to be 9.19 mg g−1 at pH 6.5 for 80 s and this was proven to be a potential material to remove F− ions rapidly from drinking water
    corecore