23 research outputs found

    Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells

    Get PDF
    Background CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. Methods After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. Results We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. Conclusion Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers

    Identification of Novel Interaction Partners of Ets-1: Focus on DNA Repair

    Get PDF
    The transcription factor Ets-1 (ETS proto-oncogene 1) shows low expression levels except in specific biological processes like haematopoiesis or angiogenesis. Elevated levels of expression are observed in tumor progression, resulting in Ets-1 being named an oncoprotein. It has recently been shown that Ets-1 interacts with two DNA repair enzymes, PARP-1 (poly(ADP-ribose) polymerase 1) and DNA-PK (DNA-dependent protein kinase), through two different domains and that these interactions play a role in cancer. Considering that Ets-1 can bind to distinctly different domains of two DNA repair enzymes, we hypothesized that the interaction can be transposed onto homologs of the respective domains. We have searched for sequence and structure homologs of the interacting ETS(Ets-1), BRCT(PARP-1) and SAP(DNA-PK) domains, and have identified several candidate binding pairs that are currently not annotated as such. Many of the Ets-1 partners are associated to DNA repair mechanisms. We have applied protein-protein docking to establish putative interaction poses and investigated these using centrality analyses at the protein residue level. Most of the identified poses are virtually similar to our recently established interaction model for Ets-1/PARP-1 and Ets-1/DNA-PK. Our work illustrates the potentially high number of interactors of Ets-1, in particular involved in DNA repair mechanisms, which shows the oncoprotein as a potential important regulator of the mechanism

    How the second-order nonlinear optical response of the collagen triple helix appears:A theoretical investigation

    No full text
    The origin and the nature of the first hyperpolarizability of collagen has been unraveled by performing first-principles calculations on the PPG10 compound, a molecular model for the collagen triple helix structure, and on its building blocks. The first hyperpolarizability of the triple helix originates from the amide groups. Owing to the rigidity of the structure and of the proline units, the β-tensor components parallel to the helical axis add to each other, whereas the perpendicular components cancel each other, which result in a dipolar first hyperpolarizability and a depolarization ratio close to 9. The calculations have also shown that the resulting β values cannot be viewed as the simple sum of the amide group contributions. Indeed, for a given chain, the β per amino acid increases with the size of the chain, whereas the β of the triple helix is smaller than three times the β of a single chain. The calculations, performed at different levels of approximation, demonstrated also the reliability of the ONIOM scheme when combining high and low layers described with different basis sets and the weak impact of electron correlation

    Monoclinic form of isopentenyl diphosphate isomerase: a case of polymorphism in biomolecular crystals

    No full text
    Type 1 isopentenyl diphosphate isomerase (IDI-1) in a new crystal form

    Inhibition studies on enzymes involved in isoprenoid biosynthesis. focus on two potential drug targets:Dxr and idi-2 enzymes

    No full text
    Isoprenoid compounds constitute an immensely diverse group of acyclic, monocyclic and polycyclic compounds that play important roles in all living organisms. Despite the diversity of their structures, this plethora of natural products arises from only two 5-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This review will discuss the enzymes in the mevalonate (MVA) and methylerythritol phosphate (MEP) biosynthetic pathways leading to IPP and DMAPP with a particular focus on MEP synthase (DXR) and IPP isomerase (IDI), which are potential targets for the development of antibiotic compounds. DXR is the second enzyme in the MEP pathway and the only one for which inhibitors with antimicrobial activity at pharmaceutically relevant concentrations are known. All of the published DXR inhibitors are fosmidomycin analogues, except for a few bisphosphonates with moderate inhibitory activity. These far, there are no other candidates that target DXR. IDI was first identified and characterised over 40 years ago (IDI-1) and a second convergently evolved isoform (IDI-2) was discovered in 2001. IDI-1 is a metalloprotein found in Eukarya and many species of Bacteria. Its mechanism has been extensively studied. In contrast, IDI-2 requires reduced flavin mononucleotide as a cofactor. The mechanism of action for IDI-2 is less well defined. This review will describe how lead inhibitors are being improved by structure-based drug design and enzymatic assays against DXR to lead to new drug families and how mechanistic probes are being used to address questions about the mechanisms of the isomerases

    Tetartohedral twinning in IDI-2 from Thermus thermophilus:crystallization under anaerobic conditions

    No full text
    Type-2 isopentenyl diphosphate isomerase (IDI-2) is a key flavoprotein involved in the biosynthesis of isoprenoids. Since fully reduced flavin mononucleotide (FMNH(2)) is needed for activity, it was decided to crystallize the enzyme under anaerobic conditions in order to understand how this reduced cofactor binds within the active site and interacts with the substrate isopentenyl diphosphate (IPP). In this study, the protein was expressed and purified under aerobic conditions and then reduced and crystallized under anaerobic conditions. Crystals grown by the sitting-drop vapour-diffusion method and then soaked with IPP diffracted to 2.1 Å resolution and belonged to the hexagonal space group P6(3)22, with unit-cell parameters a = b = 133.3, c = 172.9 Å

    Crystal structure of type 2 isopentenyl diphosphate isomerase from Thermus thermophilus in complex with inorganic pyrophosphate

    No full text
    The N-terminal region is stabilized in the crystal structure of T. thermophilus type 2 IPP isomerase in complex with inorganic pyrophosphate; providing new insights about the active site and the catalytic mechanism of the enzyme. The PPi moiety is located near the conserved residues, H10, R97, H152, Q157, E158 and W219, and the flavin cofactor. The putative active site of IDI-2 provides interactions for stabilizing a carbocationic intermediate similar to those that stabilize the intermediate in the well-established protonation/deprotonation mechanism of IDI-1
    corecore