2,324 research outputs found
Entanglement in fermionic chains with finite range coupling and broken symmetries
We obtain a formula for the determinant of a block Toeplitz matrix associated
with a quadratic fermionic chain with complex coupling. Such couplings break
reflection symmetry and/or charge conjugation symmetry. We then apply this
formula to compute the Renyi entropy of a partial observation to a subsystem
consisting of contiguous sites in the limit of large . The present work
generalizes similar results due to Its, Jin, Korepin and Its, Mezzadri, Mo. A
striking new feature of our formula for the entanglement entropy is the
appearance of a term scaling with the logarithm of the size of . This
logarithmic behaviour originates from certain discontinuities in the symbol of
the block Toeplitz matrix. Equipped with this formula we analyse the
entanglement entropy of a Dzyaloshinski-Moriya spin chain and a Kitaev
fermionic chain with long range pairing.Comment: 27 pages, 5 figure
Localization in the Rindler Wedge
One of the striking features of QED is that charged particles create a
coherent cloud of photons. The resultant coherent state vectors of photons
generate a non-trivial representation of the localized algebra of observables
that do not support a representation of the Lorentz group: Lorentz symmetry is
spontaneously broken. We show in particular that Lorentz boost generators
diverge in this representation, a result shown also in [1] (See also [2]).
Localization of observables, for example in the Rindler wedge, uses Poincar\'e
invariance in an essential way [3]. Hence in the presence of charged fields,
the photon observables cannot be localized in the Rindler wedge.
These observations may have a bearing on the black hole information loss
paradox, as the physics in the exterior of the black hole has points of
resemblance to that in the Rindler wedge.Comment: 11 page
On the M\"obius transformation in the entanglement entropy of fermionic chains
There is an intimate relation between entanglement entropy and Riemann
surfaces. This fact is explicitly noticed for the case of quadratic fermionic
Hamiltonians with finite range couplings. After recollecting this fact, we make
a comprehensive analysis of the action of the M\"obius transformations on the
Riemann surface. We are then able to uncover the origin of some symmetries and
dualities of the entanglement entropy already noticed recently in the
literature. These results give further support for the use of entanglement
entropy to analyse phase transition.Comment: 29 pages, 5 figures. Final version published in JSTAT. Two new
figures. Some comments and references added. Typos correcte
Smoothly-varying hopping rates in driven flow with exclusion
We consider the one-dimensional totally asymmetric simple exclusion process
(TASEP) with position-dependent hopping rates. The problem is solved,in a mean
field/adiabatic approximation, for a general (smooth) form of spatial rate
variation. Numerical simulations of systems with hopping rates varying linearly
against position (constant rate gradient), for both periodic and open boundary
conditions, provide detailed confirmation of theoretical predictions,
concerning steady-state average density profiles and currents, as well as
open-system phase boundaries, to excellent numerical accuracy.Comment: RevTeX 4.1, 14 pages, 9 figures (published version
Desidratação por imersão-impregnação e secagem por convecção de goiaba.
O objetivo deste trabalho foi avaliar as características físico-químicas e sensoriais de goiabas in natura e submetidas à desidratação por imersão-impregnação e à secagem complementar por convecção, além de avaliar a estabilidade da cor das goiabas secadas após 30, 60 e 90 dias de armazenamento sob refrigeração. Amostras de goiaba foram imersas em soluções de sacarose a 0,4 e 0,5 g mL-1, sacarose a 0,3 g mL-1 + sucralose a 0,2 g L-1, açúcar invertido a 41% (p/p) e açúcar invertido sem diluição. Foram avaliados sólidos solúveis totais, acidez titulável, pH, cor, aroma, aparência, sabor e textura. O teor de sólidos solúveis totais das amostras aumentou linearmente em função do tempo de imersão, sem efeito significativo do tipo de açúcar empregado no preparo da solução. A preservação do teor de ácido cítrico foi mais pronunciada em soluções menos concentradas de sacarose. Amostras secadas não submetidas à desidratação osmótica exibiram maior alteração de cor do que aquelas previamente desidratadas. Soluções de sacarose são mais eficazes na estabilidade da cor do que as de açúcar invertido. As goiabas submetidas à desidratação por imersão-impregnação tiveram boa aceitação sensorial, e aquelas secadas apenas por convecção não foram aceitas pelos provadores
Connectivity-dependent properties of diluted sytems in a transfer-matrix description
We introduce a new approach to connectivity-dependent properties of diluted
systems, which is based on the transfer-matrix formulation of the percolation
problem. It simultaneously incorporates the connective properties reflected in
non-zero matrix elements and allows one to use standard random-matrix
multiplication techniques. Thus it is possible to investigate physical
processes on the percolation structure with the high efficiency and precision
characteristic of transfer-matrix methods, while avoiding disconnections. The
method is illustrated for two-dimensional site percolation by calculating (i)
the critical correlation length along the strip, and the finite-size
longitudinal DC conductivity: (ii) at the percolation threshold, and (iii) very
near the pure-system limit.Comment: 4 pages, no figures, RevTeX, Phys. Rev. E Rapid Communications (to be
published
Functional Bosonization of Non-Relativistic Fermions in Dimensions
We analyze the universality of the bosonization rules in non-relativistic
fermionic systems in . We show that, in the case of linear fermionic
dispersion relations, a general fermionic theory can be mapped into a gauge
theory in such a way that the fermionic density maps into a magnetic flux and
the fermionic current maps into a transverse electric field. These are
universal rules in the sense that they remain valid whatever the interaction
considered. We also show that these rules are universal in the case of
non-linear dispersion relations provided we consider only density-density
interactions. We apply the functional bosonization formalism to a
non-relativistic and non-local massive Thirring-like model and evaluate the
spectrum of collective excitations in several limits. In the large mass limit,
we are able to exactly calculate this spectrum for arbitrary density-density
and current-current interactions. We also analyze the massless case and show
that it has no collective excitations for any density-density potential in the
Gaussian approximation. Moreover, the presence of current interactions may
induce a gapless mode with a linear dispersion relation.Comment: 26 Pages, LaTeX, Final version to appear in International Journal of
Modern Physics
Entanglement entropy in the Long-Range Kitaev chain
In this paper we complete the study on the asymptotic behaviour of the
entanglement entropy for Kitaev chains with long range pairing. We discover
that when the couplings decay with the distance with a critical exponent new
properties for the asymptotic growth of the entropy appear. The coefficient of
the leading term is not universal any more and the connection with conformal
field theories is lost. We perform a numerical and analytical approach to the
problem showing a perfect agreement. In order to carry out the analytical
study, a new technique for computing the asymptotic behaviour of block Toeplitz
determinants with discontinuous symbols has been developed.Comment: 20 pages, 5 figure
- …