300 research outputs found

    Generic phase diagram of active polar films

    Full text link
    We study theoretically the phase diagram of compressible active polar gels such as the actin network of eukaryotic cells. Using generalized hydrodynamics equations, we perform a linear stability analysis of the uniform states in the case of an infinite bidimensional active gel to obtain the dynamic phase diagram of active polar films. We predict in particular modulated flowing phases, and a macroscopic phase separation at high activity. This qualitatively accounts for experimental observations of various active systems, such as acto-myosin gels, microtubules and kinesins in vitro solutions, or swimming bacterial colonies.Comment: 4 pages, 1 figur

    Nonequilibrium Fluctuations, Travelling Waves, and Instabilities in Active Membranes

    Get PDF
    The stability of a flexible fluid membrane containing a distribution of mobile, active proteins (e.g. proton pumps) is shown to depend on the structure and functional asymmetry of the proteins. A stable active membrane is in a nonequilibrium steady state with height fluctuations whose statistical properties are governed by the protein activity. Disturbances are predicted to travel as waves at sufficiently long wavelength, with speed set by the normal velocity of the pumps. The unstable case involves a spontaneous, pump-driven undulation of the membrane, with clumping of the proteins in regions of high activity.Comment: 4 two-column pages, two .eps figures included, revtex, uses eps

    Mechanochemical action of the dynamin protein

    Full text link
    Dynamin is a ubiquitous GTPase that tubulates lipid bilayers and is implicated in many membrane severing processes in eukaryotic cells. Setting the grounds for a better understanding of this biological function, we develop a generalized hydrodynamics description of the conformational change of large dynamin-membrane tubes taking into account GTP consumption as a free energy source. On observable time scales, dissipation is dominated by an effective dynamin/membrane friction and the deformation field of the tube has a simple diffusive behavior, which could be tested experimentally. A more involved, semi-microscopic model yields complete predictions for the dynamics of the tube and possibly accounts for contradictory experimental results concerning its change of conformation as well as for plectonemic supercoiling.Comment: 17 pages, 4 figures; typos corrected, reference adde

    Energy Transduction of Isothermal Ratchets: Generic Aspects and Specific Examples Close to and Far from Equilibrium

    Full text link
    We study the energetics of isothermal ratchets which are driven by a chemical reaction between two states and operate in contact with a single heat bath of constant temperature. We discuss generic aspects of energy transduction such as Onsager relations in the linear response regime as well as the efficiency and dissipation close to and far from equilibrium. In the linear response regime where the system operates reversibly the efficiency is in general nonzero. Studying the properties for specific examples of energy landscapes and transitions, we observe in the linear response regime that the efficiency can have a maximum as a function of temperature. Far from equilibrium in the fully irreversible regime, we find a maximum of the efficiency with values larger than in the linear regime for an optimal choice of the chemical driving force. We show that corresponding efficiencies can be of the order of 50%. A simple analytic argument allows us to estimate the efficiency in this irreversible regime for small external forces.Comment: 16 pages, 10 figure

    Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Get PDF
    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs(+ )formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs(+ )within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs(+ )for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs(+ )and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output

    Polydispersity and ordered phases in solutions of rodlike macromolecules

    Full text link
    We apply density functional theory to study the influence of polydispersity on the stability of columnar, smectic and solid ordering in the solutions of rodlike macromolecules. For sufficiently large length polydispersity (standard deviation σ>0.25\sigma>0.25) a direct first-order nematic-columnar transition is found, while for smaller σ\sigma there is a continuous nematic-smectic and first-order smectic-columnar transition. For increasing polydispersity the columnar structure is stabilized with respect to solid perturbations. The length distribution of macromolecules changes neither at the nematic-smectic nor at the nematic-columnar transition, but it does change at the smectic-columnar phase transition. We also study the phase behaviour of binary mixtures, in which the nematic-smectic transition is again found to be continuous. Demixing according to rod length in the smectic phase is always preempted by transitions to solid or columnar ordering.Comment: 13 pages (TeX), 2 Postscript figures uuencode

    Feasibility of Onchocerciasis Elimination with Ivermectin Treatment in Endemic Foci in Africa: First Evidence from Studies in Mali and Senegal

    Get PDF
    The control of onchocerciasis, or river blindness, is based on annual or six-monthly ivermectin treatment of populations at risk. This has been effective in controlling the disease as a public health problem, but it is not known whether it can also eliminate infection and transmission to the extent that treatment can be safely stopped. Many doubt that this is feasible in Africa. A study was undertaken in three hyperendemic onchocerciasis foci in Mali and Senegal where treatment has been given for 15 to 17 years. The results showed that only few infections remained in the human population and that transmission levels were everywhere below postulated thresholds for elimination. Treatment was subsequently stopped in test areas in each focus, and follow-up evaluations did not detect any recrudescence of infection or transmission. Hence, the study has provided the first evidence that onchocerciasis elimination is feasible with ivermectin treatment in some endemic foci in Africa. Although further studies are needed to determine to what extent these findings can be extrapolated to other areas in Africa, the principle of onchocerciasis elimination with ivermectin treatment has been established

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Topical immunotherapy of severe alopecia areata with diphenylcyclopropenone (DPCP): experience in an Iranian population

    Get PDF
    BACKGROUND: Highly variable results of topical diphenylcyclopropenone (DPCP) in the treatment of alopecia areata have been reported so far. The purposes of the present study were to evaluate the efficacy and tolerability of DPCP treatment in severe alopecia areata. METHODS: Twenty-eight patients (16 female and 12 male, 10–35 years old, mean age 25 years) with extensive alopecia areata were enrolled in an open-label clinical trial. After sensitization with 2% DPCP, progressively higher concentrations beginning at 0.001% were applied weekly for 6 months to one side of the scalp, after which, if terminal hair growth was noted, the entire scalp was then treated under the same weekly protocol. The maximum concentration of DPCP in acetone was 2%. RESULTS: Twenty-seven of 28 patients completed therapy. The overall response rate was 81.5% (22/27), complete remission (90%-100% terminal hair re-growth) was obtained 22.2% (6/27) and partial remission (10%-90% terminal hair re-growth) in 59.3% (16/27). In all patients an eczematous reaction consisting of erythema, itching, and scaling at the site of application were observed. During therapy, other side effects including, occipital lymphadenopathy 40.7% (11/27), severe eczema/blister formation 40.7% (11/27), hyperpigmentation 18.5% (5/27) were observed, but no hypopigmentation, vitiligo, contact urticaria, and erythema multiforme-like reaction were seen in the patients. Nineteen of 27 (70.4%) patients had at least one side effect, other than eczematous reaction. Notably, partial recurrence was observed in 50.9% (13/22) of these patients after 6 to 12 months of follow-up. During the follow-up time the maintenance DPCP immunotherapy was continued. CONCLUSION: Topical DPCP treatment for alopecia areata is an effective therapy with a slightly high relapse rate during bilateral maintenance treatment. According to the author's knowledge this is the first experience with DPCP in Iran
    corecore