4 research outputs found

    Protocolised non-invasive compared with invasive weaning from mechanical ventilation for adults in intensive care : the Breathe RCT

    Get PDF
    Background: Invasive mechanical ventilation (IMV) is a life-saving intervention. Following resolution of the condition that necessitated IMV, a spontaneous breathing trial (SBT) is used to determine patient readiness for IMV discontinuation. In patients who fail one or more SBTs, there is uncertainty as to the optimum management strategy. Objective: To evaluate the clinical effectiveness and cost-effectiveness of using non-invasive ventilation (NIV) as an intermediate step in the protocolised weaning of patients from IMV. Design: Pragmatic, open-label, parallel-group randomised controlled trial, with cost-effectiveness analysis. Setting: A total of 51 critical care units across the UK. Participants: Adult intensive care patients who had received IMV for at least 48 hours, who were categorised as ready to wean from ventilation, and who failed a SBT. Interventions: Control group (invasive weaning): patients continued to receive IMV with daily SBTs. A weaning protocol was used to wean pressure support based on the patient’s condition. Intervention group (non-invasive weaning): patients were extubated to NIV. A weaning protocol was used to wean inspiratory positive airway pressure, based on the patient’s condition. Main outcome measures: The primary outcome measure was time to liberation from ventilation. Secondary outcome measures included mortality, duration of IMV, proportion of patients receiving antibiotics for a presumed respiratory infection and health-related quality of life. Results: A total of 364 patients (invasive weaning, n = 182; non-invasive weaning, n = 182) were randomised. Groups were well matched at baseline. There was no difference between the invasive weaning and non-invasive weaning groups in median time to liberation from ventilation {invasive weaning 108 hours [interquartile range (IQR) 57–351 hours] vs. non-invasive weaning 104.3 hours [IQR 34.5–297 hours]; hazard ratio 1.1, 95% confidence interval [CI] 0.89 to 1.39; p = 0.352}. There was also no difference in mortality between groups at any time point. Patients in the non-invasive weaning group had fewer IMV days [invasive weaning 4 days (IQR 2–11 days) vs. non-invasive weaning 1 day (IQR 0–7 days); adjusted mean difference –3.1 days, 95% CI –5.75 to –0.51 days]. In addition, fewer non-invasive weaning patients required antibiotics for a respiratory infection [odds ratio (OR) 0.60, 95% CI 0.41 to 1.00; p = 0.048]. A higher proportion of non-invasive weaning patients required reintubation than those in the invasive weaning group (OR 2.00, 95% CI 1.27 to 3.24). The within-trial economic evaluation showed that NIV was associated with a lower net cost and a higher net effect, and was dominant in health economic terms. The probability that NIV was cost-effective was estimated at 0.58 at a cost-effectiveness threshold of £20,000 per quality-adjusted life-year. Conclusions: A protocolised non-invasive weaning strategy did not reduce time to liberation from ventilation. However, patients who underwent non-invasive weaning had fewer days requiring IMV and required fewer antibiotics for respiratory infections. Future work: In patients who fail a SBT, which factors predict an adverse outcome (reintubation, tracheostomy, death) if extubated and weaned using NIV? Trial registration: Current Controlled Trials ISRCTN15635197. Funding: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 48. See the NIHR Journals Library website for further project information

    Adrenaline to improve survival in out-of-hospital cardiac arrest : the PARAMEDIC2 RCT

    Get PDF
    Background Adrenaline has been used as a treatment for cardiac arrest for many years, despite uncertainty about its effects on long-term outcomes and concerns that it may cause worse neurological outcomes. Objectives The objectives were to evaluate the effects of adrenaline on survival and neurological outcomes, and to assess the cost-effectiveness of adrenaline use. Design This was a pragmatic, randomised, allocation-concealed, placebo-controlled, parallel-group superiority trial and economic evaluation. Costs are expressed in Great British pounds and reported in 2016/17 prices. Setting This trial was set in five NHS ambulance services in England and Wales. Participants Adults treated for an out-of-hospital cardiac arrest were included. Patients were ineligible if they were pregnant, if they were aged < 16 years, if the cardiac arrest had been caused by anaphylaxis or life-threatening asthma, or if adrenaline had already been given. Interventions Participants were randomised to either adrenaline (1 mg) or placebo in a 1 : 1 allocation ratio by the opening of allocation-concealed treatment packs. Main outcome measures The primary outcome was survival to 30 days. The secondary outcomes were survival to hospital admission, survival to hospital discharge, survival at 3, 6 and 12 months, neurological outcomes and health-related quality of life through to 6 months. The economic evaluation assessed the incremental cost per quality-adjusted life-year gained from the perspective of the NHS and Personal Social Services. Participants, clinical teams and those assessing patient outcomes were masked to the treatment allocation. Results From December 2014 to October 2017, 8014 participants were assigned to the adrenaline (n = 4015) or to the placebo (n = 3999) arm. At 30 days, 130 out of 4012 participants (3.2%) in the adrenaline arm and 94 out of 3995 (2.4%) in the placebo arm were alive (adjusted odds ratio for survival 1.47, 95% confidence interval 1.09 to 1.97). For secondary outcomes, survival to hospital admission was higher for those receiving adrenaline than for those receiving placebo (23.6% vs. 8.0%; adjusted odds ratio 3.83, 95% confidence interval 3.30 to 4.43). The rate of favourable neurological outcome at hospital discharge was not significantly different between the arms (2.2% vs. 1.9%; adjusted odds ratio 1.19, 95% confidence interval 0.85 to 1.68). The pattern of improved survival but no significant improvement in neurological outcomes continued through to 6 months. By 12 months, survival in the adrenaline arm was 2.7%, compared with 2.0% in the placebo arm (adjusted odds ratio 1.38, 95% confidence interval 1.00 to 1.92). An adjusted subgroup analysis did not identify significant interactions. The incremental cost-effectiveness ratio for adrenaline was estimated at £1,693,003 per quality-adjusted life-year gained over the first 6 months after the cardiac arrest event and £81,070 per quality-adjusted life-year gained over the lifetime of survivors. Additional economic analyses estimated incremental cost-effectiveness ratios for adrenaline at £982,880 per percentage point increase in overall survival and £377,232 per percentage point increase in neurological outcomes over the first 6 months after the cardiac arrest. Limitations The estimate for survival with a favourable neurological outcome is imprecise because of the small numbers of patients surviving with a good outcome. Conclusions Adrenaline improved long-term survival, but there was no evidence that it significantly improved neurological outcomes. The incremental cost-effectiveness ratio per quality-adjusted life-year exceeds the threshold of £20,000–30,000 per quality-adjusted life-year usually supported by the NHS. Future work Further research is required to better understand patients’ preferences in relation to survival and neurological outcomes after out-of-hospital cardiac arrest and to aid interpretation of the trial findings from a patient and public perspective. Trial registration Current Controlled Trials ISRCTN73485024 and EudraCT 2014-000792-11. Funding This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 25. See the NIHR Journals Library website for further project information
    corecore