1 research outputs found

    Phase diagram and single-particle spectrum of CuO2_2 layers within a variational cluster approach to the 3-band Hubbard model

    Full text link
    We carry out a detailed numerical study of the three-band Hubbard model in the underdoped region both in the hole- as well as in the electron-doped case by means of the variational cluster approach. Both the phase diagram and the low-energy single-particle spectrum are very similar to recent results for the single-band Hubbard model with next-nearest-neighbor hoppings. In particular, we obtain a mixed antiferromagnetic+superconducting phase at low doping with a first-order transition to a pure superconducting phase accompanied by phase separation. In the single-particle spectrum a clear Zhang-Rice singlet band with an incoherent and a coherent part can be seen, in which holes enter upon doping around (Ï€/2,Ï€/2)(\pi/2,\pi/2). The latter is very similar to the coherent quasi-particle band crossing the Fermi surface in the single-band model. Doped electrons go instead into the upper Hubbard band, first filling the regions of the Brillouin zone around (Ï€,0)(\pi,0). This fact can be related to the enhanced robustness of the antiferromagnetic phase as a function of electron doping compared to hole doping.Comment: 14 pages, 15 eps figure
    corecore